ATLAS OF CALIFORNIA CURRENT MARINE BIRD AND MAMMAL DISTRIBUTIONS: VERSION 1

C. Rintoul¹, B. Langabeer-Schlagenhauf¹, K.D. Hyrenbach¹,², K.H. Morgan³, and W.J. Sydeman¹

¹Marine Ecology Division
PRBO Conservation Science
3820 Cypress Drive, # 11
Petaluma, CA 94954, USA

²Duke University Marine Laboratory
135 Duke Marine Lab. Rd.
Beaufort, NC 28516, USA
khyrenba@duke.edu

³Environment Canada
c/o Institute of Ocean Sciences
9860 West Saanich Road
Sidney, British Columbia V8L 4B2
Canada

December 2006

Executive Summary

Marine birds and mammals are conspicuous and important marine organisms. They forage on a variety of zooplankton (copepods, euphausiids) and nekton (squid and fish) prey. By virtue of their high energetic requirements and mobility, these top marine predators may serve as indicators of spatial variability in ecosystem functions and dynamics. Herein, we present distribution maps for select resident and migratory marine birds and mammals in three regions of the California Current System (CCS). We summarize long-term datasets collected in conjunction with ongoing fisheries oceanography surveys in the CCS: the California Cooperative Oceanic Fisheries Investigations (CalCOFI) covering the southern California Bight and adjacent waters, the National Marine Fisheries Service Rockfish Recruitment Survey (NMFS-RRS) covering the Gulf of the Farallones and adjacent waters, and the Canadian Department of Fisheries and Oceans Ocean Station Papa program (DFO-Line P) covering the southeastern Gulf of Alaska. We produced annual and seasonal maps for a total of 24 representative marine bird and 9 marine mammal species, which together account for 83% and 93% of all the birds and mammals sighted during these surveys, respectively. These maps provide insights on biogeographic affinities, habitat associations, and “hotspots” of biodiversity and potential predator-prey dynamics. Identifying “hotspots” is potentially valuable in the design of offshore marine protected area networks. Within the study regions, we found apparent “hotspots” near Point Conception, along Monterey Canyon and at Cordell Bank, and at La Perouse Bank off Vancouver Island. We observed strong seasonal changes in the distribution and abundance of birds and mammals, which alters the relative importance of these “hotspots”. The value of “hotspots” for the protection of these far-ranging pelagic species deserves further study.
Table of Contents
I. Introduction ... 2
II. Study Area ... 4
III. Materials and Methods: Shipboard Surveys 6
 A. Line P Study Area .. 6
 B. NMFS Rockfish Recruitment Survey Study Area 7
 C. California Cooperative Fisheries Oceanic Investigations Study Area 8
 D. Data Collection ... 10
 E. Mapping and Species Selection 12
 F. Definition of Seasons .. 12
IV. Distribution Maps .. 13
Breeding Seabirds of the CCS
 Black Storm-Petrel .. 15
 Black-vented Shearwater .. 19
 Brandt’s Cormorant .. 23
 Brown Pelican .. 27
 California Gull .. 31
 Cassin’s Auklet .. 37
 Common Murre ... 43
 Fork-tailed Storm-Petrel .. 48
 Glauccous-winged Gull ... 50
 Leach’s Storm-Petrel ... 53
 Rhinoceros Auklet ... 59
 Western Gull ... 65
Migratory/Non-breeding Seabirds of the CCS
 Black-footed Albatross ... 71
 Black-legged Kittiwake ... 77
 Bonaparte’s Gull .. 83
 Cook’s Petrel ... 87
 Herring Gull .. 91
 Northern Fulmar ... 95
 Pacific Loon ... 101
 Pink-footed Shearwater ... 105
 Pomarine Jaeger ... 111
 Red Phalarope ... 115
 Red-necked Phalarope ... 119
 Sooty Shearwater .. 125
Marine Mammals of the CCS
 Blue Whale ... 131
 California Sea Lion .. 135
 Common Dolphin species .. 139
 Dall’s Porpoise .. 143
 Gray Whale .. 149
 Humpback Whale ... 153
 Northern Fur Seal ... 159
 Pacific White-sided Dolphin 165
 Risso’s Dolphin ... 171
V. Acknowledgements .. 175
VI. Literature cited .. 176
VII. Appendices .. 182
I. Introduction

The California Current System (CCS) is a large, dynamic and spatially heterogeneous marine ecosystem of the North Pacific Ocean (Duda and Sherman 2002). The CCS spans over 3,000 km of latitude, from approximately the northern tip of Vancouver Island, British Columbia (B.C.) to Punta Eugenia, Baja California (Figure 1). Several major physical oceanographic processes, linked to variability in atmospheric pressure cells and the intensity of dominant currents of the CCS, determine ecosystem form and function. These include seasonal, year-to-year, and longer-term (lower-frequency) variability in localized coastal upwelling, mesoscale eddy variability associated with meanders of the California Current itself, and sub-arctic and subtropical water mass intrusions. The strength and juxtaposition of the North Pacific High relative to the Continental Low and Aleutian Low pressure systems determines the phasing and amplitude of winds which force coastal and offshore upwelling and the intensity of the California Current (Chelton and McGowan 1982; McGowan et al. 1998; McGowan et al. 2003). Numerous sites of high primary and secondary productivity provide foraging opportunities for a diverse and abundant marine mega-fauna, including seabirds, marine mammals and large predatory fish. Many of these species are highly migratory, visiting the CCS from breeding grounds in Alaska (e.g., fur seals, northern fulmars), Baja California (e.g., gray whales), the Western Pacific (e.g., bluefin tuna, leatherback turtles) and as far as the southern hemisphere (e.g., several shearwaters and petrels). Collectively, these living marine resources support vast societal interests, including commercial and recreational fishing and ecotourism.

Despite being a diverse and highly productive ecosystem, marine top predators of the CCS face a variety of threats. Natural variability, exemplified by interannual (e.g., El Niño) and interdecadal forcings, alter CCS food webs, often with demographic consequences to predator populations. This represents a challenge for management as changes in populations must be viewed from the perspective of natural temporal environmental variability. Indications are that CCS marine bird and mammal populations are strongly influenced by these normal environmental perturbations (e.g., Sydeman and Allen, 1999; Mills et al. 2005). Anthropogenic stressors, such as fishing, coastal development, and pollution may directly and indirectly
affect top marine predator populations. Human impacts on marine birds and mammals may also interact synergistically with natural ecosystem variability. For example, the west coast population of Pacific sardine (*Sardinops sagax*) was driven to low levels (and economic extinction) by extensive fishing during a period of adverse climatic conditions for these fish (Chavez et al. 2003). Thus, understanding spatial and temporal variability in ecosystem structure and dynamics and the interactions between natural and anthropogenic impacts has become a central focus of marine conservation in recent time.

In particular, place-based management of ocean resources with time-area closures and protected areas represents one of the newest, albeit controversial, approaches in marine conservation. In the CCS, many initiatives to restore and conserve healthy marine populations and ensure long-term ecological services (e.g., fisheries) are focused on designing and implementing networks of marine protected areas. A logical key first step in designing MPA networks entails determining the distribution and abundance (hence biogeography and aggregation) of marine organisms, and to understand wildlife-ocean habitat associations. Though pelagic systems are inherently different from terrestrial systems, similar concepts for determining key habitats may apply. Predator distributions have been common criteria for the design of protected areas in terrestrial environments. Particularly conspicuous predators may be used as indicators, or “umbrella” species whose protection aids in protecting complex systems.

With partners from NOAA Fisheries, NOAA National Marine Sanctuaries, California Department of Fish and Game, Scripps Institution of Oceanography, and Department of Fisheries and Oceans Canada, PRBO Conservation Science (formerly Point Reyes Bird Observatory) has studied the distributions of marine birds and mammals in the CCS over the past two decades. We have used these extensive datasets to test the hypothesis that areas of persistent biological activity in the open ocean (“ecosystem hotspots”) can be identified and characterized using top predators as indicators of spatial variability. We base this hypothesis on evidence that seabirds and marine mammals aggregate to forage at specific oceanographic habitats, such as fronts, and that these structures are recurrent in space and time due to physical processes (Franks 1992). In the CCS, recent technical papers on marine bird and mammal (and other pelagic nekton) distribution and abundance and “hotspots” include: Ainley et al. (2005), Ford et al. (2004), NCCOS (2003), O’Hara et al. (2006), Reese and Brodeur (2006), Tynan et al. (2005), and Yen et al. (2004, 2005, 2006).

This *Atlas of California Current Marine Birds and Mammals* complements these technical reports and provides an initial synthesis of the information across 3 regions of the CCS. The maps contained within this atlas illustrate the distribution and abundance of select species (see below) by season (where possible) and over all seasons and years (cumulative distribution and abundance). The atlas is intended as a resource for scientists and managers working on pelagic and coastal ocean systems, and as a tool to support ecosystem-based marine conservation strategies.
II. Study Area

As noted above, this atlas covers oceanic habitats along the west coast of North America under the direct influence of the offshore California Current, nearshore Davidson Undercurrent, and coastal upwelling. A large slow-moving offshore “river,” the California Current is formed as the eastern leg of the North Pacific Gyre. The intensity of the transport in the California Current varies by season, year, and decade, fluctuating, in part, relative to the position and strength of the North Pacific Current (or West Wind Drift), which traverses the sub-Arctic North Pacific and bifurcates into the Alaska Current and California Current off the B.C. coastline (Chelton and McGowan 1982). While much of B.C. may be considered an oceanographic “transition zone,” we define the extent of the CCS at the northern tip of Vancouver Island, B.C., due to extensive upwelling along this section of the coastline. Based on physical and biological oceanographic characteristics, GLOBEC (1992) subdivided the CCS into three distinct “eco-regions”: (1) southern British Columbia, Washington and Oregon to Cape Blanco; (2) southern Oregon to Point Conception; and (3) southern California and Baja (Figure 2). Due to seasonal and longer-term climate variability, it is recognized that the boundaries of these regions are dynamic and shift under certain oceanographic conditions.

Embedded within these broad eco-regions are smaller mesoscale hydrographic habitats created by meanders, eddies, and jets of the California Current proper, and centers of upwelling are found along the coastline associated with coastal promontories (Strub et al. 1991; Kudela and Chavez 2000). To name a few, major upwelling cells are known at Punta Eugenia (Baja), Point Conception (CA), Point Sur (CA), Point Arena (CA), Cape Mendocino (CA), and Cape Blanco (OR). Within eco-regions, habitat heterogeneity is further defined by underwater topography, or “bathymetric habitats”, such as the continental shelf (Figure 3), and canyons, seamounts and banks (Figure 4). Sub-surface formations influence currents and tidally-based water flows, giving rise to secondary hydrographic features, such as shelf-break fronts or seamount-derived eddies. Zooplankton are known to concentrate close to the sea surface at certain bathymetric and hydrographic features, where they are available to secondary consumers. In this atlas, we consider four depth domains defined as follows: shelf (0-150 m depth), shelf-break (151-300 m depth), slope (301-2000 m depth), and pelagic waters (> 2000 m depth).

Intense coastal upwelling and the southward advection of cool water along the North American west coast characterize the CCS as a sub-arctic ecosystem (Duda and Sherman 2002), though periodic intrusions of sub-tropical water (sometimes associated with strengthening of the Davidson Undercurrent) during El Niño events can dramatically alter ecosystem productivity and the proportions of sub-arctic to sub-tropical species in the region (Chelton and McGowan 1982; GLOBEC 1992; Lenarz et al. 1995, McGowan et al. 1996, Hyrenbach and Veit 2003, Ford 2004). Biogeographic boundaries for some prey species are associated with these major upwelling centers, especially at Point Conception and Cape Mendocino, California. The juxtaposition of different water masses, atmospheric conditions which promote or limit upwelling-favorable winds (e.g., distribution of the North Pacific High and Continental Low), and the benthic-pelagic interactions at the numerous sea mounts, canyons, and an extensive shelf-break habitat make the CCS one of the most dynamic marine ecosystems in the world.
Figure 2. CCS Eco-Regions as defined by GLOBEC (1992).
III. Material and Methods: Shipboard Surveys

Figure 3. Three study areas surveyed in the CCS by PRBO and partners over the past 20+ years.

III. A.
Line P – Seabird and marine mammal surveys, Environment Canada
CCS Region 1: southeastern Gulf of Alaska

In 1949, oceanographic sampling began on ships used for enhanced weather forecasting off British Columbia, Canada. Since then, vessels from the Department of Fisheries and Oceans (DFO) have followed the same ~1,500 km cruise track from Vancouver Island (48.51°N, 124.81°W) to Ocean Station Papa (50.0°N, 145.0°W) 2-3 times each year (Figure 4a). We refer to this standardized transect as “Line P.” Starting in 1996, Environment Canada, in collaboration with DFO, began regular surveys of marine birds and mammals along Line P. PRBO joined the project in 2000 (K.H. Morgan and W.J. Sydeman, unpublished data; Yen et al. 2005; O’Hara et al. 2006).
Bathymetry along Line P is complex, dropping to a depth of 1000 m approximately 60 km from the coastline. Productivity of the coastal region is enhanced by a constant nutrient supply from the Strait of Juan de Fuca and coastal upwelling (Allen et al. 2001; Whitney et al. 2005). In comparison, the oceanic domain is characterized by gradual deepening, punctuated with scattered deep seamounts and ridges (Figure 4a). With its broad marine habitat coverage, Line P provides substantial spatial coverage for examining seabird and marine mammal distributions in the eastern Gulf of Alaska.

III. B.
NMFS Rockfish Recruitment Survey - NOAA Fisheries/National Marine Fisheries Services
CSC Region 2: Gulf of the Farallones

The National Marine Fisheries Service (NMFS) has conducted annual Rockfish Recruitment Surveys in the greater Gulf of the Farallones (Monterey Bay to Bodega Bay) off central California since 1983 (Figure 4b). PRBO added collection of marine bird and mammal data aboard these cruises in 1985 (Oedekoven et al. 2001, Keiper et al. 2005), though herein we present data from 1997 - present. This region is characterized by a broad continental shelf and complex bathymetry. This complexity is defined by an island chain (the Farallon Archipelago), a shallow seamount (Cordell Bank), a major submarine canyon (Monterey Canyon), and numerous smaller canyons bisecting the continental shelf. The Farallon Archipelago consists of two main islands and numerous sea stacks and islets stretching over approximately 15 km along the outer continental shelf. Cordell Bank, situated 20 km northwest (38.02°N 123.44°W) of the westernmost Farallon islet, is approximately 111 km² in area, and reaches to within 35 m of the ocean surface. The Farallon Islands are a National Wildlife Refuge, managed by United States Fish and Wildlife Service (USFWS), and host the largest marine bird and mammal colonies in the contiguous United States. Approximately 300,000 birds of 12 species currently breed there (PRBO and USFWS, unpublished data). In addition, roughly 10,000 pinnipeds belonging to 5 species also reproduce and/or haul out on the archipelago each year (Sydeman and Allen 1999). Waters surrounding the Farallon Archipelago and Cordell Bank are encompassed by the Gulf of the Farallones and Cordell Bank National Marine Sanctuaries, respectively, which are managed by the National Oceanic and Atmospheric Administration (NOAA)/National Ocean Service.

Coastal upwelling is particularly strong in the Gulf of the Farallones; the resulting enrichment of surface waters leads to exceptional levels of marine productivity here. Coastal upwelling may occur year-round, with a seasonal peak in the late spring and early summer (Bakun 1975; GLOBEC 1992; Wing et al. 1995). During its peak, a relatively persistent upwelling plume may extend 15–75 km offshore into the Gulf of the Farallones, where it interacts with meanders and eddies along the inner boundary of the California Current (Schwing et al. 1991; Steger et al. 2000). Upwelling in the south of the study area near Monterey Bay is centered off of Davenport, California (Pennington and Chavez 2000). While upwelling events in this region are less vigorous than those to the north, cold, nutrient-rich surface waters from the Davenport upwelling plume advect southward across the mouth of Monterey Bay, stimulating offshore productivity. Localized upwelling also occurs at the edges of Monterey Canyon (Shea and Broenkow 1982).
III. C.
California Cooperative Oceanic Fisheries Investigations (CalCOFI)
CCS Region 3: Southern California Bight

In the southern CCS, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) has been monitoring ecosystem dynamics since 1949 (Bograd et al. 2003; Ohman and Venrick 2003). As part of their research, CalCOFI has established the importance of both coastal and oceanic habitats to a variety of plankton and fish species (e.g., Checkley et al. 2000; Logerwell et al. 2001). Starting in 1987, a long-term observational program for marine birds and mammals was added to seasonal CalCOFI cruises. This program has provided novel understandings of top predator responses to temporal environmental variability in the CCS (e.g., Veit et al. 1997; Hyrenbach and Veit 2003).

In its current form, the CalCOFI survey grid consists of six parallel transects, ranging in length from 470 (northernmost) to 700 (southernmost) km (Figure 4c). This study area encompasses over 300,000 km² of the Pacific Ocean, ranging from 30° to 35° N, and seaward from the southern California coast to 124° W. This broad study area covers an array of bathymetric domains including shelf-slope regions and deep pelagic waters as well as a variety of hydrographic habitats (e.g., water masses, mesoscale features). Mesoscale eddies are consistently identified in the region, but are both spatially and temporally variable (Yen et al. 2006). The California Current core, a core of strong equatorward flow through the region, is a prominent hydrographic feature each spring. However, the position and route of the core is substantially variable as its distance from shore can fluctuate inter-annually. Coastal upwelling also occurs in this study area with a major center located at Point Conception. The initiation of upwelling each spring in the region results in development of a strong nearshore equatorward jet yielding strong increases in primary productivity (Lynn et al. 2003). The development of this upwelling jet appears to be independent of the wintertime manifestation of the California Current, which tends to be much further offshore.
Figure 4. Key bathymetric habitats in the 3 study regions. (a) Line P - Gulf of Alaska; (b) NMFS - Gulf of the Farallones; (c) CalCOFI - Southern California Bight.
III. D. Methods
Data Collection

We used common techniques for vessel-based censusing of seabirds and marine mammals at sea (Tasker et al. 1984; Buckland et al. 1993). Briefly, for all surveys, one or two observers identified and counted birds and mammals from the flying bridge or the pilot house of a research vessel, from approximately 10 m above the sea surface, during all daylight hours. A hand-held range finder and binoculars were used to ground-truth the width of the survey strip (Heinemann 1981), and only those seabirds that entered a 90° arc from the bow to the beam and out to 250-300 m on the one side with best visibility (e.g., lowest sun glare) were enumerated, assigned behavioral codes (flying, sitting on the water, feeding, ship-attracted), and logged into a field computer (Husky FEX 21 or similar) or on data sheets (Line P only). Ship-attracted individuals were recorded when first sighted, and ignored thereafter. The positions of the boat were time-coded into the survey log periodically and at the beginning and end of each transect using the ship’s GPS. Most surveys were conducted while the research vessel was underway at a speed of 10–12 knots (18.6–22.3 km h⁻¹). Seabird density was expressed as the number of individuals sighted per unit area surveyed (birds km⁻²). All marine mammals were sighted from the center line to the horizon, and their numbers were expressed as an encounter rate, per km of track line surveyed (mammals km⁻¹).
Table 1. Mapped seabird and mammal species by study area.

<table>
<thead>
<tr>
<th>Seabird Species</th>
<th>CalCOFI</th>
<th>NMFS</th>
<th>Line P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Storm-Petrel</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black-footed Albatross</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Black-legged Kittiwake</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Black-vented Shearwater</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonaparte's Gull</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandt's Cormorant</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown Pelican</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Gull</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cassin's Auklet</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Common Murre</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cook's Petrel</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fork-tailed Storm-Petrel</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glaucous-winged Gull</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herring Gull</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leach's Storm-Petrel</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Northern Fulmar</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pacific Loon</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink-footed Shearwater</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pomarine Jaeger</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Phalarope</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-necked Phalarope</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rhinoceros Auklet</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sooty Shearwater</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Western Gull</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mammal Species</th>
<th>CalCOFI</th>
<th>NMFS</th>
<th>Line P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Whale</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>California Sea Lion</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Common Dolphin</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dall's Porpoise</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gray Whale</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Humpback Whale</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Northern Fur Seal</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pacific White-sided Dolphin</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Risso's Dolphin</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
III. E. Mapping and Species Selection

Seabird and mammal distribution and abundance maps include data from 1987 through 2004. Frequently, additional oceanographic projects were under simultaneous investigation during the cruises; consequently, vessels often deviated from the replicate track line. Therefore, for each study region, only those survey bins that fall within a buffer on either side of the track lines are included here (25 km for Line P and CalCOFI, 10 km for NMFS). A smaller buffer was selected for the NMFS survey due to the close proximity of the replicate parallel cruise tracks. Buffers are illustrated on each species distribution map as a light gray border surrounding the density survey data (see also Figures 3 and 4). Seabird maps include sightings of birds flying, feeding, and sitting. All sightings of mammals were mapped regardless of behavior. Because Line P data were recorded using 5-minute periods, to standardize data as much as possible we grouped CalCOFI and NMFS-RRS continuously-logged datasets into discrete 1.5 km bins (the approximate distance traveled in 5 minutes by a vessel traveling at 10 knots). Mapped data were further restricted to bins at least 1 km in length. For each study area, only those seabird species observed in 30 or more bins per year during at least 3 years of each study were included in the Atlas. Seabird species that met this criterion for 2 of the 3 study areas were mapped for all 3 areas. As there were comparatively fewer records for mammals, species were mapped regardless of sample size. Table 1 summarizes mapped seabird and mammal species by study area. A complete list of all birds and mammals observed during the study period (including those not mapped) may be found in Appendices A - F. A small amount of data was excluded from the mapped dataset. This included an incomplete Line P cruise from winter 2000, NMFS-RRS cruises from 1996 and 2000 that only produced limited information (~4 survey days each), and some “mini-cruises” from late 1997 and 1998 which only covered the southernmost lines of the CalCOFI grid.

III. F. Definitions of Seasons

Defining seasons was challenging as the start and/or end dates of surveys varied from year to year (Table 2). As such, individual cruise data were not classified based on the seasonal definition of the Gregorian calendar, but were assigned a seasonal category (e.g. winter, spring, summer, fall) and mapped accordingly. Seasonal maps differed by study area as not all seasons were sampled in each study area. Line P surveys occurred during winter, summer, and fall; CalCOFI surveys sampled all four seasons; and NMFS Rockfish cruises only took place in spring.
Table 2. Season/date coverage of study area cruises presented in the atlas.

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Season</th>
<th>Earliest - Latest Dates Sampled</th>
<th>Count of cruises*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line P</td>
<td>Winter</td>
<td>February 5 – March 4</td>
<td>7</td>
</tr>
<tr>
<td>Line P</td>
<td>Summer</td>
<td>May 8 – July 26</td>
<td>9</td>
</tr>
<tr>
<td>Line P</td>
<td>Fall</td>
<td>August 15 – September 19</td>
<td>7</td>
</tr>
<tr>
<td>NMFS</td>
<td>Spring</td>
<td>May 4 – June 16</td>
<td>5</td>
</tr>
<tr>
<td>CalCOFI</td>
<td>Winter</td>
<td>January 5 – March 11</td>
<td>15</td>
</tr>
<tr>
<td>CalCOFI</td>
<td>Spring</td>
<td>March 23 – May 13</td>
<td>18</td>
</tr>
<tr>
<td>CalCOFI</td>
<td>Summer</td>
<td>June 29 – September 18</td>
<td>17</td>
</tr>
<tr>
<td>CalCOFI</td>
<td>Fall</td>
<td>September 13 - November 27</td>
<td>18</td>
</tr>
</tbody>
</table>

*Some CalCOFI seasonal cruise counts reflect data from multiple cruises conducted during the same season/year

IV. Distribution Maps

We present cumulative (all years and seasons) and seasonal distribution maps for select seabirds and most marine mammals. Mapped distributions correspond to the georeferenced midpoints of the survey bins. Seabirds are mapped on the basis of their apparent density (birds km\(^{-2}\)), whereas the mammal maps are based on their encounter rates (mammals km\(^{-1}\)). For all maps, the size of the red symbols corresponds to the magnitude of a given species density/encounter rate at that location (higher density = larger symbols). Minimum and maximum densities and encounter rates remain consistent between bird and mammal species, respectively. Appendix G shows survey effort for each study area. Brief species accounts accompany each of the mapped species, followed by related CalCOFI, NMFS, and Line P distribution and abundance maps.
Breeding Seabirds of the California Current System
Black Storm-Petrel
Oceanodroma melania

Black Storm-Petrels (BLSP) are endemic to islands off California and Baja California, including the Gulf of California. When not breeding, BLSP disperse both north and south along the coast. This dispersal is well-portrayed in the seasonal distribution maps of the CalCOFI study area with a low frequency of occurrence in all seasons except summer. This species showed a preference for shelf waters. Although little is known about BLSP diet, it likely consists of small fish, squid, and crustaceans found in the upper 1 m of the water column (Ainley and Everett 2001).
Black-vented Shearwater
Puffinus opisthomelas

Black-vented Shearwater (BVSH) is the only shearwater that breeds in the California Current System. BVSH occur primarily in coastal areas and are found during all seasons in the CalCOFI area. Highest densities were found over shelf waters in fall/winter. This species forages mainly on schooling fish and squid (Keitt et al. 2000).
Brandt’s Cormorant
Phalacrocorax penicillatus

Brandt’s Cormorants (BRCO) are endemic to the west coast of North America. They reach the southernmost extent of their breeding range in Baja California and the northern limit approximately half way up the west coast of Vancouver Island. The at-sea distribution of BRCO in the CCS is considered to be related to upwelling cells, where this species feeds on fish. Relatively high densities of this species were found on the continental shelf during all seasons.
Brown Pelican
Pelecanus occidentalis

The Brown Pelican (BRPE) is a resident of the CalCOFI study area with major breeding colonies found along the coasts of southern California and Baja California. BRPE feed on fish and some invertebrates. High densities of BRPE were found over the continental shelf during all seasons, with highest densities in fall.
California Gull
Larus californicus

Distribution and abundance of California Gulls (CAGU) in southern California decline in summer when breeding birds migrate inland to nest; the highest densities occur in winter (Winkler 1996). In the CalCOFI study area, highest densities occurred over the continental shelf. Densities in the NMFS study area were roughly equal over the shelf and shelf-break, though birds occurred more frequently in the south. CAGU are opportunistic foragers, consuming almost anything depending on prey availability (Winkler 1996).
Cassin’s Auklet
Ptychoramphus aleuticus

Populations of Cassin’s Auklet (CAAU) appear to be declining throughout most of the species’ range. Highest CAAU densities in the CalCOFI area occurred over shelf and shelf-break habitats in the winter. Winter distribution of CAAU was primarily pelagic in the CalCOFI area, a trend noted by Briggs et al. (1987); whereas, Morgan et al. (1991) noted that within B.C., CAGU occurred primarily over the outer shelf. Spring surveys in the NMFS study area showed that the highest densities occurred on the continental shelf, with notable aggregations near Cordell Bank, Fanny Shoals, and Monterey Canyon. Prey taken includes small crustaceans, squid and small fish. (Manuwal and Thoresen 1993).
Common Murre
Uria aalge

Core California Current System breeding locations of Common Murres (COMU) occur in Oregon and northern California. The annual presence of COMU in the CalCOFI study area was variable, with distributions occurring near Point Conception and Santa Barbara Channel. Spring distributions in the NMFS study area suggested a preference for shelf and shelf-break habitats, with highest densities occurring over the shelf. COMU prey upon fish, euphausiids, and squid (Ainley et al. 2002).
The majority of the Fork-tailed Storm-Petrels (FTSP) within the California Current System breeds in British Columbia (Carter et al. 1992; Rodway et al. 1991). FTSP appear to use a wide range of bathymetric habitats in the Line P study area during all seasons. Higher densities of FTSP occurred over the shelf-break and slope in summer. FTSP relies mainly on surface feeding selecting fish and crustaceans, though it may also scavenge marine mammal carcasses at sea (Boersma and Silva 2001).
Glaucous-winged Gull
Larus glaucescens

Glaucous-winged Gulls (GWGU) and Western Gulls (WEGU) hybridize in Washington and Oregon. During the winter, GWGU disperse from the continental shelf to deeper waters in the Line P study area. In summer, however, they showed a distinctly coastal distribution. GWGU forage on fish, marine invertebrates, human refuse, and carrion (Verbeek 1993).
Leach’s Storm-Petrel
Oceanodroma leucorhoa

Leach’s Storm-Petrel (LHSP) is the most widespread procellariiform in the Northern Hemisphere (Huntington et al. 1996). Although distributions are chiefly pelagic, congregations of this species may be found at fronts and eddies related to upwelling. Distributions of LHSP in the CalCOFI area showed birds over the slope in summer, but the highest densities occurred over pelagic waters. LHSP observed in the Line P area occurred almost exclusively over depths greater than 1000 m in summer and fall (with highest densities on the slope). The species was virtually absent from the Line P area in winter. LHSP feed on zooplankton and micronekton.
Rhinoceros Auklet
Cerorhinca monocerata

Rhinoceros Auklets (RHAU) were most numerous and extended further south in the CalCOFI study area during winter. In the NMFS study area, spring distributions were variable and did not show a clear pattern. Highest densities of RHAU in both the NMFS and CalCOFI areas occurred over the continental shelf. This contrasts with the findings of Briggs et al. (1987) who stated that RHAU were “commonest in waters seaward of the shelf-break,” but supports Morgan et al. (1991) who found that RHAU tended to concentrate over the shelf and shelf-break off of western Canada. Diet consists primarily of fish though RHAU also consumes euphausiids and squid (Gaston and Dechesne 1996).
Western Gulls (WEGU) are endemic to the California Current System with the majority of the population concentrated in California (Kushlan 2002), and the largest single colony is located on Southeast Farallon Island. At sea, WEGU primarily feed on fish and marine invertebrates (Pierotti and Annett 1995). Highest densities of WEGU were concentrated over the continental shelf in both the NMFS and CalCOFI study areas; few were encountered over pelagic waters. Distribution of WEGU in the CalCOFI study area appeared to be coastal in summer with dispersal to deeper waters in winter. Notably, the average density of WEGU on the shelf in this area remained relatively constant throughout all seasons.
Migratory/Non-breeding Seabirds of the California Current System
Black-footed Albatross

Phoebastria nigripes

In the CalCOFI study, Black-footed Albatross (BFAL) occur in greater abundances at distances greater than 100 km from the mainland (Sanger 1974). Across survey areas, there were higher densities north of Point Conception in the NMFS and Line P areas. Line P and NMFS surveys showed the highest BFAL densities over the shelf-break and slope. During the breeding season, BFAL feed primarily on flying-fish eggs, squid, and crustaceans. This species attends fishing boats and feeds on bait and discards (Whittow 1993).
CalCOFI Winter Cruises
Black-footed Albatross

Density (birds/km²)
- 0.1 - 5
- 5.1 - 10
- 10.1 - 50
- > 50

CalCOFI Spring Cruises
Black-footed Albatross
Atlas of California Current Marine Bird and Mammal Distributions, v.1

NMFS - All Cruises
Black-footed Albatross

Line P - All Cruises
Black-footed Albatross

Density (birds/km²)
- 0.1 - 5
- 5.1 - 10
- 10.1 - 50
- > 50

Density (birds/km²)
- 0.1 - 5
- 5.1 - 10
- 10.1 - 50
- > 50
Black-legged Kittiwake
Rissa tridactyla

Highest densities of Black-legged Kittiwake (BLKI) occurred over the slope and shelf-break of the CalCOFI and Line P study areas during winter, respectively. BLKI were largely absent from the CalCOFI and Line P areas in summer and fall; coinciding with the breeding season. BLKI feed on fish at the oceans surface, and sometimes on offal from ships (Baird 1994).
Bonaparte’s Gull
Larus philadelphia

Bonaparte’s Gulls (BOGU) were absent from the CalCOFI study area during the summer. They occurred over shallow waters < 1000 m, with highest densities over the continental shelf. In the marine environment, BOGU feed on small fish and invertebrates (Burger and Gochfeld 2002).
Little information exists for Cook’s Petrel (COPE) in the California Current System. Generally, this species is found far offshore, preferring pelagic waters (>3000m), especially at the southern extent of the CalCOFI study area. COPE occurs most abundantly during the spring/summer seasons.
Herring Gull
Larus argentatus

Marine fishes and invertebrates constitute a large part of the Herring Gull’s (HERG) diet, although they exhibit opportunistic foraging behaviors (Pierotti and Good 1994). The species was most frequently observed and at highest densities in the CalCOFI area over the continental shelf - from spring through fall. During winter, HERG were encountered over the shelf and over pelagic waters. The greatest abundance of HERG was found in fall.
Northern Fulmar
Fulmarus glacialis

Northern Fulmars (NOFU) forage on fish, zooplankton, squid, offal, and carrion, often nocturnally (Hatch and Nettleship 1998). NOFU made far greater use of pelagic waters in the Line P study area during winter, and in the CalCOFI area during fall and winter. NOFU were nearly absent from the CalCOFI study area during summer months; whereas, they were regularly encountered over the shelf and shelf-break of Line P at that time. Waters over the shelf-break appeared to have been the preferred habitat of NOFU in the NMFS and CalCOFI areas.
Pacific Loons (PALO) breed on Artic lakes during summer and are absent from the California Current System during this period. PALO generally occurred over the continental shelf and shelf-break, especially near the northern Channel Islands. Highest densities occurred in fall. Aggregations of PALO appeared to be highly variable between years. Marine foods consumed include fish and aquatic invertebrates (Russell 2002).
Pink-footed Shearwater

Puffinus creatopus

Pink-footed Shearwaters (PFSH) breed on islands off Chile in the austral spring. Numbers in the CalCOFI area increased in spring, peaked in summer, and dropped off in fall. PFSH appeared to show a preference for shelf and shelf-break habitats in all three CCS areas (Briggs et al. 1987; Morgan et al. 1991).
The main foraging habits of Pomarine Jaegers (POJA) include scavenging, kleptoparasitism, and predation of small seabirds. In the CalCOFI study area, POJA are most often observed over depths < 3000 m (Wiley and Lee 2000). POJA abundance varied seasonally, with fewer birds occurring in summer when the majority of POJA have already migrated to their Arctic nesting grounds.
Red Phalarope
Phalaropus fulicarius

Red Phalaropes (REPH) are the most pelagic of the three phalarope species. REPH were present in the study area during all seasons though their abundances vary across years. The highest densities of REPH occurred over the slope.
Red-necked Phalarope
Phalaropus lobatus

Red-necked Phalaropes (RNPH) were most abundant in the CalCOFI study area in spring. Winter surveys documented the lowest densities. The highest seasonal densities occurred over the continental shelf, although RNPH were also observed in deep offshore waters. In the NMFS study area, RNPH were found south of Point Bonita, especially in the vicinity of Monterey Bay. The diet of RNPH consists primarily of small marine invertebrates including euphausiids and copepods (Rubega et al. 2000).
Sooty Shearwaters (SOSH) are seasonally abundant throughout all three study areas, peaking in abundance during spring/summer. The near absence of the species during winter reflects migration to breeding grounds in the southern hemisphere. Distributions in the CalCOFI area showed greater use of offshore habitat in spring and especially fall, and inshore habitats during summer. High densities of SOSH generally occurred over the continental shelf, as well as further offshore during summer and fall. Populations in the NMFS area were widely distributed, with high densities occurring over all habitats. SOSH feed primarily on fish, squid, and macrozooplankton.
Selected Marine Mammals
Of the
California Current System
Blue whales inhabit a wide variety of ocean depths and occur in all oceans throughout the globe. Identified as the largest animal ever known to live on the Earth, the diet of blue whales consists almost entirely of euphausiids (krill). Blue whales were observed most frequently during summer in the CalCOFI study area.
NMFS - All Cruises
Blue Whale

Individuals per km surveyed:
- 0.1 - 1
- 1.1 - 5
- 5.1 - 10
- > 10
California Sea Lion
Zalophus californianus

California sea lions in the CalCOFI study area were generally found in waters < 3000 m in winter. In the NMFS study area, the species was more likely to occur south of Point Bonita - roughly the northern edge of its breeding range. The diet of California sea lions consists of squid, octopus, and many species of fish (Jefferson et al. 1993).
Due to the difficulty of differentiating these species in the field, observations of Long-beaked and Short-beaked Common Dolphins were combined. Aside from one sighting in the NMFS study area, this species was only encountered in the CalCOFI area. Highest densities were observed during fall surveys. Main prey taken by both species includes squid and small schooling fish (Reeves et al. 2002).
Dall’s Porpoise
Phocoenoides dalli

Dall’s porpoise occurs in all of the study areas. Within the CCS, Dall’s porpoises were widespread, and found in waters of varying depths. Lowest numbers occurred in the CalCOFI area in summer and in the Line P area during winter. The diet of Dall’s porpoise consists of small fish and squid (Reeves et al. 2002).
Gray Whale
Eschrichtius robustus

Because gray whales feed on benthic prey, they occur mostly in shallow coastal waters. The occurrence of gray whales in the CalCOFI study area was limited to winter and spring migration periods.
Humpback whales make the longest migration of any mammal, breeding in tropical waters in the winter and feeding at northern latitudes in the summer. Humpbacks were nearly absent from the study areas in winter. Within the CalCOFI area, they were most frequently encountered near Point Conception and the Santa Barbara Channel. Of all three study areas, the greatest number of humpback whales were observed in the NMFS study area during the spring. Their diet consists of small schooling fish and krill.
Northern Fur Seal
Callorhinus ursinus

Northern Fur Seals are endemic to the North Pacific and the Bering and Okhotsk Seas. In the NMFS study area, Northern Fur Seals occurred most frequently over the continental slope. Distribution in the CalCOFI study area was sparse, wide, and without a clear pattern. Although they were regularly seen along Line P in winter and summer, they were detected only once during the fall. Northern Fur Seals feed on an assortment of fish and squid species.
Pacific White-sided Dolphin
Lagenorhynchus obliquidens

Pacific White-sided Dolphins are a common species in the North Pacific and were encountered in all three study areas. The species was absent from Line P cruises in winter and was restricted to the shelf and slope area during the summer. However, they were far more widespread in the Line P area in the fall. In both the CalCOFI and NMFS study areas, highest numbers were found over the continental slope. Pacific White-sided Dolphins mainly feed on small schooling fish and squid.
Risso’s Dolphin
Grampus griseus

Risso’s dolphins are widely distributed throughout tropical and warm temperate ocean waters of the world (Reeves et al. 2002). Although they do occur off the B.C. coast, they were not encountered during any Line P cruises. Within the CalCOFI and NMFS study areas, they were most numerous over the shelf-break in most seasons. Risso’s dolphins are believed to mainly forage on squid, though some fish may be taken as well (Reeves et al. 2002).
Acknowledgements

We thank the National Fish and Wildlife Foundation (Bio-indicators of Ecosystem Health I, II, and III), Moore Family Foundation, Resources Legacy Fund Foundation, the David and Lucile Packard Foundation, National Science Foundation/California Current Ecosystem Long-term Ecological Research, Canadian Wildlife Service, and Friends of PRBO for supporting fieldwork and production of this Atlas. The California Department of Fish and Game, NOAA Fisheries, Scripps Institution of Oceanography, and Department of Fisheries and Ocean Canada generously provided ship-time and bunk-space to accommodate our observers. Observers included Chuck Alexander, Michael Bentley, Louise Blight, Russell Bradley, Adam Brown, Natalia Collier, Mary Beth Decker, Jon Dunn, Meredith Elliott, Chris Elphick, Alice Ewing, Richard A. Forster, David Gardner, Ingrid Harrald, Mike Henry, Lisa Hugg, Carol Keiper, Bruce Lenventhal, Keith Maggert, Kathy Molina, Bob Morgan, Kristie Nelson, Cornelia Oedekoven, Peter Pyle, Allan Reitsch, Bob Russell, Jarrod Santora, Ryan T. Shaw, Kirk Stowe, Dick Veit, Pete Warzybok, Bridget Watts, Sophie Webb, and Jason Yakich; to all we offer sincere gratitude. This work would not have been possible without the substantial efforts from the officers and crew of the RV Alpha Helix, New Horizon, Roger Revelle, David Starr Jordon, and John P. Tully. Richard R. Veit and John McGowan deserve special mention for initiating the CalCOFI seabird project in 1987. Peggy P.W. Yen provided expert database management for many years. This is PRBO contribution number 1329.
Literature Cited

<table>
<thead>
<tr>
<th>Seabird Species</th>
<th>CalCOFI Study Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Coot</td>
<td>Elegant Tern</td>
</tr>
<tr>
<td>Ancient Murrelet</td>
<td>Flesh-footed Shearwater</td>
</tr>
<tr>
<td>Arctic Loon</td>
<td>Forster's Tern</td>
</tr>
<tr>
<td>Arctic Tern</td>
<td>Franklin's Gull</td>
</tr>
<tr>
<td>Ashy Storm-Petrel</td>
<td>Fork-tailed Storm-Petrel</td>
</tr>
<tr>
<td>American White Pelican</td>
<td>Great Blue Heron</td>
</tr>
<tr>
<td>Black-footed Albatross</td>
<td>Glaucous Gull</td>
</tr>
<tr>
<td>Black Brant</td>
<td>Green Heron</td>
</tr>
<tr>
<td>Black-legged Kittiwake</td>
<td>Glaucous-winged Gull</td>
</tr>
<tr>
<td>Black Scoter</td>
<td>Heermann's Gull</td>
</tr>
<tr>
<td>Black Skimmer</td>
<td>Herring Gull</td>
</tr>
<tr>
<td>Black Storm-Petrel</td>
<td>Horned Puffin</td>
</tr>
<tr>
<td>Black Tern</td>
<td>Juan Fernandez Petrel</td>
</tr>
<tr>
<td>Bonaparte's Gull</td>
<td>Kelp Gull</td>
</tr>
<tr>
<td>Brandt's Cormorant</td>
<td>Kermadec Petrel</td>
</tr>
<tr>
<td>Brown Booby</td>
<td>Laysan Albatross</td>
</tr>
<tr>
<td>Brown Noddy</td>
<td>Laughing Gull</td>
</tr>
<tr>
<td>Brown Pelican</td>
<td>Least Tern</td>
</tr>
<tr>
<td>Bullethead</td>
<td>Leach's Storm-Petrel</td>
</tr>
<tr>
<td>Buller's Shearwater</td>
<td>Long-tailed Jaeger</td>
</tr>
<tr>
<td>Black-vented Shearwater</td>
<td>Least Storm-Petrel</td>
</tr>
<tr>
<td>Cassin's Auklet</td>
<td>Mallard</td>
</tr>
<tr>
<td>California Gull</td>
<td>Marbled Murrelet</td>
</tr>
<tr>
<td>Caspian Tern</td>
<td>Mew Gull</td>
</tr>
<tr>
<td>Clark's Grebe</td>
<td>Mottled Petrel</td>
</tr>
<tr>
<td>Common Loon</td>
<td>Murphy's Petrel</td>
</tr>
<tr>
<td>Common Murre</td>
<td>Northern Fulmar</td>
</tr>
<tr>
<td>Cook's Petrel</td>
<td>Parakeet Auklet</td>
</tr>
<tr>
<td>Common Tern</td>
<td>Parasitic Jaeger</td>
</tr>
<tr>
<td>Craveri's Murrelet</td>
<td>Pacific Loon</td>
</tr>
<tr>
<td>Double-crested Cormorant</td>
<td>Parkinson's Petrel</td>
</tr>
<tr>
<td>Dark-rumped Petrel</td>
<td>Pelagic Cormorant</td>
</tr>
<tr>
<td>Eared Grebe</td>
<td>Pink-footed Shearwater</td>
</tr>
</tbody>
</table>
Appendix B. Mammal species observed in the CALCOFI study area

Baird's Beaked Whale
Blue Whale
Bottlenose Dolphin
California Sea Lion
Cuvier's Beaked Whale
Common Dolphin
Dall's Porpoise
Fin Whale
False Killer Whale
Guadalupe Fur Seal
Gray Whale
Harbor Porpoise
Harbor Seal
Humpback Whale
Killer Whale
Minke Whale
Northern Elephant Seal
Northern Fur Seal
Northern Right Whale
Dolphin
Pilot Whale
Pygmy Sperm Whale
Pacific White-sided Dolphin
Risso's Dolphin
Short-beaked Common Dolphin
Sea Otter
Sei Whale
Short-finned Pilot Whale
Sperm Whale
Striped Dolphin
Steller Sea Lion
Appendix C. Seabird and mammal species observed in the NMFS study area

Arctic Tern Horned Puffin White-winged Petrel
Ashy Storm-Petrel Laysan Albatross Xantus's Murrelet
Black-footed Albatross Least Tern Leach's Storm-Petrel
Black Brant Mew Gull Murphy's Petrel
Black-legged Kittiwake Pacific Loon Northern Fulmar
Black Storm-Petrel Pelagic Cormorant Parasitic Jaeger
Bonaparte's Gull Pink-footed Shearwater Pigeon Guillemot
Brandt's Cormorant Pomarine Jaeger Ring-billed Gull
Brown Pelican Red Phalarope Red-billed Tropicbird
Bueller's Shearwater Red-necked Phalarope Rhinoceros Auklet
Black-vented Shearwater Red-throated Loon Sabine's Gull
Cassin's Auklet Sabine's Gull Sooty Shearwater
California Gull Sooty Shearwater South Polar Skua
Caspian Tern Surf Scoter Tufted Puffin
Common Loon Surf Scoter Western Grebe
Common Murre Surf Scoter Western Gull
Cook's Petrel Surf Scoter Wilson's Storm-Petrel
Common Tern Surf Scoter Wedge-tailed Shearwater
Double-crested Cormorant Surf Scoter Western Gull
Dark-rumped Petrel Surf Scoter Wilson's Storm-Petrel
Eared Grebe Surfbird Western Gull
Elegant Tern Surfbird Wilson's Storm-Petrel
Flesh-footed Shearwater Surfbird Withe-throated Loon
Forster's Tern Surfbird Xantus's Murrelet
Franklin's Gull Surfbird Wilson's Storm-Petrel
Fork-tailed Storm-Petrel Surfbird Wilson's Storm-Petrel
Glaucous-winged Gull Surfbird Wilson's Storm-Petrel
Heermann's Gull Surfbird Wilson's Storm-Petrel
Herring Gull Surfbird Wilson's Storm-Petrel

Page 184
Appendix D. Mammal species observed in the NMFS study area

Blue Whale
Bottlenose Dolphin
California Sea Lion
Common Dolphin
Dall's Porpoise
Fin Whale
Guadalupe Fur Seal
Gray Whale
Harbor Porpoise
Harbor Seal
Humpback Whale
Killer Whale
Minke Whale
Northern Elephant Seal
Northern Fur Seal
Northern Right Whale
Dolphin
Pacific White-sided Dolphin
Risso's Dolphin
Sea Otter
Sperm Whale
Steller Sea Lion
Appendix E. Seabird species observed in the Line P study area

<table>
<thead>
<tr>
<th>Species</th>
<th>Species</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleutian Tern</td>
<td>Leach's Storm-Petrel</td>
<td>Tufted Puffin</td>
</tr>
<tr>
<td>American Wigeon</td>
<td>Long-tailed Jaeger</td>
<td>Western Gull</td>
</tr>
<tr>
<td>Ancient Murrelet</td>
<td>Marbled Murrelet</td>
<td>Western/Glaucous-winged Gull Hybrid</td>
</tr>
<tr>
<td>Arctic Tern</td>
<td>Mew Gull</td>
<td>White-winged Scoter</td>
</tr>
<tr>
<td>Black Brant</td>
<td>Mottled Petrel</td>
<td>Xantus's Murrelet</td>
</tr>
<tr>
<td>Black-footed Albatross</td>
<td>Murphy's Petrel</td>
<td>Yellow-billed Loon</td>
</tr>
<tr>
<td>Black-legged Kittiwake</td>
<td>Northern Fulmar</td>
<td></td>
</tr>
<tr>
<td>Black-vented Shearwater</td>
<td>Pacific Loon</td>
<td></td>
</tr>
<tr>
<td>Bonaparte's Gull</td>
<td>Parakeet Auklet</td>
<td></td>
</tr>
<tr>
<td>Brandt's Cormorant</td>
<td>Parasitic Jaeger</td>
<td></td>
</tr>
<tr>
<td>Buller's Shearwater</td>
<td>Pelagic Cormorant</td>
<td></td>
</tr>
<tr>
<td>California Gull</td>
<td>Pigeon Guillemot</td>
<td></td>
</tr>
<tr>
<td>Cassin's Auklet</td>
<td>Pink-footed Shearwater</td>
<td></td>
</tr>
<tr>
<td>Common Loon</td>
<td>Pomarine Jaeger</td>
<td></td>
</tr>
<tr>
<td>Common Murre</td>
<td>Red Phalarope</td>
<td></td>
</tr>
<tr>
<td>Common Tern</td>
<td>Red-breasted Merganser</td>
<td></td>
</tr>
<tr>
<td>Cook's Petrel</td>
<td>Red-necked Grebe</td>
<td></td>
</tr>
<tr>
<td>Dark-rumped Petrel</td>
<td>Red-necked Phalarope</td>
<td></td>
</tr>
<tr>
<td>Double-crested Cormorant</td>
<td>Red-throated Loon</td>
<td></td>
</tr>
<tr>
<td>Flesh-footed Shearwater</td>
<td>Rhinoceros Auklet</td>
<td></td>
</tr>
<tr>
<td>Fork-tailed Storm-Petrel</td>
<td>Ring-billed Gull</td>
<td></td>
</tr>
<tr>
<td>Glaucous Gull</td>
<td>Sabine's Gull</td>
<td></td>
</tr>
<tr>
<td>Glaucous-winged Gull</td>
<td>Short-tailed Shearwater</td>
<td></td>
</tr>
<tr>
<td>Harlequin Duck</td>
<td>Solander's Petrel</td>
<td></td>
</tr>
<tr>
<td>Heermann's Gull</td>
<td>Sooty Shearwater</td>
<td></td>
</tr>
<tr>
<td>Herring Gull</td>
<td>South Polar Skua</td>
<td></td>
</tr>
<tr>
<td>Horned Puffin</td>
<td>Surf Scoter</td>
<td></td>
</tr>
<tr>
<td>Kittlitz's Murrelet</td>
<td>Thayer's Gull</td>
<td></td>
</tr>
<tr>
<td>Laysan Albatross</td>
<td>Thick-billed Murre</td>
<td></td>
</tr>
</tbody>
</table>
Appendix F. Mammal species observed in the Line P study area

Baird's Beaked Whale
Blue Whale
California Sea Lion
Dall's Porpoise
Fin Whale
Gray Whale
Harbor Porpoise
Harbor Seal
Humpback Whale
Killer Whale
Minke Whale
Northern Elephant Seal
Northern Fur Seal
Northern Right Whale Dolphin
Pacific White-sided Dolphin
Sea Otter
Sei Whale
Short-finned Pilot Whale
Sperm Whale
Striped Dolphin
Steller Sea Lion
Appendix G. Cumulative and seasonal maps of survey effort by study area.

CalCOFI Cumulative Survey Effort

![CalCOFI Cumulative Survey Effort Diagram]

CalCOFI Seasonal Survey Effort

![CalCOFI Seasonal Survey Effort Diagram]
CalCOFI Seasonal Survey Effort (continued)
CalCOFI Seasonal Survey Effort (continued)

![CalCOFI Survey Locations Fall Cruises](image1)

NMFS Cumulative Survey Effort

![NMFS Survey Locations All Cruises](image2)
Line P Cumulative and Seasonal Survey Effort