The Fate of Fisheries Oceanography
Introduction to the Special Issue

By Steven J. Bograd, Elliott L. Hazen, Evan A. Howell, and Anne B. Hollowed

WHAT IS FISHERIES OCEANOGRAPHY?
Fisheries oceanography can be broadly defined as study of the interaction between marine fish and their environments across multiple life-history stages. Traditional fisheries management approaches estimate population abundance levels as a function of the number of spawning adults without environmental or ecological input, but the field of fisheries oceanography has provided a framework to predict recruitment and define harvest strategies within an ecosystem context. By seeking to elucidate mechanistic relationships between fish species and their surrounding oceanic habitats, the field of fisheries oceanography aims to provide a solid understanding of fish behavior, population dynamics, and life history with an ecosystem perspective.

Photo © James R Wilkinson/SIO-CalCOFI
The origin of fisheries oceanography can be attributed to a seminal paper by Johan Hjort titled “Fluctuations in the Great Fisheries of Northern Europe Viewed in the Light of Biological Research,” published a century ago (Hjort, 1914). His research was driven in part by a desire to understand the effects of migratory behavior and fishing on fluctuations in the abundance of key European fisheries. Among his many discoveries, Hjort found that changes in migration had a minimal effect on the number of spawning adults, but that year-class strength was largely driven by the success of first-feeding larvae and eventual recruitment into the spawning stock (Houde, 2008). This initial idea is now defined as the “critical period hypothesis,” and suggests that survival at the early larval stage was the primary driver of year-class variability (Hjort, 1914, 1926). With over 100 years of research on the topic, Hjort’s hypothesis is still a focus of fisheries research, although it is now clear that ecological and environmental processes beyond larval survival alone drive strong year classes. The importance of Hjort’s early work in defining and steering fisheries oceanography research to this day is reflected by his thousands of citations and in the many papers published this year in a special issue of the ICES Journal of Marine Science on “Commemorating 100 Years Since Hjort’s 1914 Treatise on Fluctuations in the Great Fisheries of Northern Europe” (see Browman, 2014, and references therein). The field of fisheries oceanography has matured significantly over the past century, and we are now, as Ed Houde put it, “emerging from Hjort’s shadow” (Houde, 2008).

OVERVIEW OF THIS SPECIAL ISSUE

We can ask, 100 years after Hjort’s influential paper, where is fisheries oceanography now, and where is it going in the coming century? Although there have been significant technological advances in ocean observations over the past century, global pattern of low spawning biomass leading to low recruitment (and often a subsequent asymptote or decrease at high levels of spawning stock), they also point out that parental biomass explains only about 5–15% of recruitment. Although traditional single-species management continues to use spawning stock biomass as the primary indicator for recruitment, these results echo those of Hjort: recruitment estimates must integrate environmental factors and ecological interactions. Llopiz et al. revisit Hjort’s critical period hypothesis, providing a review of recent research on the early life history of fishes. In addition, the authors discuss the future of larval ecology research, focusing on understanding the impacts of climate change and other anthropogenic stressors.

One of the key advances in fisheries oceanography over the past century has been the establishment of long time-series surveys that have provided the observations needed to test and refine key hypotheses (Hare, 2014). Several such time series operating within the US Large Marine Ecosystems (LMEs) are reviewed by McClatchie et al. Among them is the California Cooperative Oceanic and Fisheries Investigations (CalCOFI) program (McClatchie, 2014), which began off the US West Coast in the 1940s, in part to explain the collapse of the vast and economically important California sardine fishery (Steinbeck, 1945; Hewitt 1988; Scheiber, 1990; Bograd et al., 2003). Sheffield Guy et al. review the evolution of NOAA’s Ecosystems and Fisheries-Oceanography Coordinated Investigations (EcoFOCI) program in the Bering Sea, which has provided great insight into how climate influences fisheries recruitment. Following in Hjort’s footsteps, both CalCOFI and EcoFOCI scientists have taken an ecosystem approach to understanding physical-biological coupling in the ocean, and they continue to pave the way forward for fisheries oceanography. Zwolinski et al. demonstrate the utility of fisheries oceanography surveys as platforms for integrating new technologies with old observing...
standards in support of ecosystem-wide observations. New acoustic technologies can be combined with standard net trawls, the workhorse of fisheries observing since the days of Hjort, to obtain the ecosystem-wide observations needed to effectively manage coastal pelagic species, which are critical to the functioning of the California Current LME.

An emphasis on transitioning from traditional single-species to ecosystem-based fisheries management is driving many of the recent developments in fisheries oceanography. For example, Peterson et al. review the development of ocean indicators that are derived from fisheries oceanography surveys and that can be related to the recruitment of a number of commercially important species in the California Current, thus improving our understanding of the environmental linkages of these species as well as their management. Similarly, Boldt et al. provide a thorough review of and recommendations for the identification of key indicators that describe and assist with the management of multiple human stressors on marine ecosystems. Robinson et al. review interactions among jellyfish, forage fish, and fisheries, and use ecosystem models to compare the impacts of jellyfish blooms in three distinct US LMEs. The global extent of jellyfish, and their potential to increase in abundance in a warming ocean (Richardson et al., 2009; Brotz et al., 2012), speaks to the importance of considering their role in marine food webs.

Among the most significant challenges in the field is to provide the research needed to effectively and sustainably manage our marine resources across multiple time scales. In the short term, this includes the adaptation of fisheries management or conservation protocols in near real time to account for the dynamic and ever-changing marine environment. Although the development and implementation of this concept of “dynamic ocean management” is still in its infancy, Hobday and Hartog provide a review of examples from Australia. They demonstrate the utility of incorporating environmental variables that are more direct measures of habitat (e.g., thermal fronts, upwelling zones) into ecosystem models, habitat predictions, and spatial management and harvest strategies, among other applications.

On longer time scales, fisheries management and conservation strategies must be able to adapt to and account for the potential impacts of climate change on the ocean and its living marine resources. In this regard, Pinsky and Mantua provide an overview of climate adaptation strategies currently under consideration within the United States and internationally, and offer a “toolbox” of strategies for fostering “climate-ready” fisheries management. Finally, Kim et al. review the combined efforts of two leading intergovernmental marine organizations, the International Council for the Exploration of the Sea (ICES) and the North Pacific Marine Science Organization (PICES), to synthesize and promote science-based advice on the impacts of climate change on marine ecosystems in the Northern Hemisphere. This excellent example points to the need for international efforts to protect our oceans and marine life within a rapidly changing climate.

WHITHER FISHERIES OCEANOGRAPHY?

While progress is clearly being made in fisheries oceanography, there is still much to be done. Technological advances in ocean and fisheries observing are moving the field forward, allowing the collection of ecosystem data at scales relevant to ecological processes affecting survival and recruitment (Houde, 2008). For example, advances in the miniaturization and data collection capacity of electronic “biologging” tags now allow collection of environmental data at the scale of an individual (Bograd et al., 2010; Hazen et al., 2012). New optic and acoustic instruments are greatly improving the observational capacity of ship-based surveys, allowing fine-scale “visualization” of the water column. Fisheries acoustics, in particular, has become a requisite tool for pelagic stock assessment, given its low invasiveness and ability to sample at much finer spatial and temporal scales than traditional techniques (Zwolinski et al.). Autonomous observing platforms such as gliders have the capacity to replace many functions of a traditional survey vessel for a fraction of the cost (Ohman et al., 2013; Greene et al., 2014, in this issue), although there are still significant limitations on direct biological sampling (and hence the continued need for shipborne nets). On global scales, a suite of satellite sensors measures surface ocean properties at relatively fine spatial and temporal scales, providing critical data for models of ocean circulation, species distributions, and stock assessments, particularly for remote parts of the ocean that are difficult to sample (Yoder et al., 2010; see Box 1). In addition to the availability of more and higher-quality ocean data, significant progress has been made in constructing ever-improving ocean and ecosystem models. Coupled physical-biological models and end-to-end ecosystem models are allowing fisheries oceanographers to examine the mechanisms of environmental influences on marine ecosystems (Miller, 2007; Fulton, 2010; Curchitser et al., 2013; Franks et al., 2013; Haidvogel et al., 2013; Ruzicka et al., 2013), as well as to evaluate management strategy scenarios (Levin et al., 2009).

With an increase in the quantity and
quality of ecosystem-relevant data, new strategies are being developed to integrate these data streams into fisheries management. This move toward ecosystem-based fisheries management has been a long-standing goal in the field, although its implementation has been slow (see summary in Link et al., 2002).

Ecosystem indicators offer tools for summarizing ecosystem status independent of management objectives (Boldt et al.; Peterson et al.; see Box 2), including synthesizing physical forcing (e.g., sea surface temperature), species-specific properties (e.g., mean weight/length ratio), ecosystem characteristics (e.g., total biomass, species richness), and human dimensions (e.g., fisheries revenue). These indicators provide information on status, trends, and the ability to differentiate between natural variability and anthropogenically induced climate change, particularly when data are available as a long time series (e.g., > 30 years) and at multiple locations within an ecosystem (Levin et al., 2009).

Enhanced observing and modeling capacity is also providing new opportunities for improving fisheries management at both short (e.g., weekly) and long (e.g., climatic) time scales. Dynamic ocean management, in which management protocols are adapted in response to changing ocean conditions, offers a promising opportunity to improve the efficiency and sustainability of target fisheries while minimizing nontarget bycatch (Howell et al., 2008; Hobday et al., 2014; Hobday and Hartog; Lewison et al., in press). At much longer time scales, climate adaptation strategies are required to prepare for potentially substantial global changes in marine ecosystems (Pörtner and Peck, 2010; Poloczanska et al., 2013; Pinsky and Mantua), including species range shifts (Perry et al., 2005; Nye et al., 2009; Pinsky et al., 2013), biogeochemical changes (e.g., increasing ocean acidification and hypoxia; Feely et al., 2009; Doney et al., 2012), phenological shifts (Edwards and Richardson, 2004; Durant et al., 2007; Sydeman and Bograd, 2009; Ji et al., 2010), and changes in productivity and community structure (Brander et al., 2007; Cheung et al., 2009; Barange et al., 2014).

In summary, while there have been great advances in the 100 years since Hjort’s seminal work, it would appear that the next century will be an exciting time for the field of fisheries oceanography.

ACKNOWLEDGMENTS. We are grateful to Mike Ford, Kennie Osgood, and the NOAA Fisheries and the Environment (FATE) program, which provided financial support for this special volume. We also thank all of the authors who contributed to this special issue, as well as the external reviewers who provided valuable suggestions to the authors. Special thanks go to Ellen Kappel, Vicky Cullen, and Johanna Adams at Oceanography magazine for helping this issue come to fruition.