Investigating the Nutrient Landscape in a Coastal Upwelling Region and Its Relationship to the Biological Carbon Pump

M.R. Stukel¹ ² and K.A. Barbeau³

¹Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA, ²Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL, USA, ³Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA

Abstract We investigated nutrient patterns and their relationship to vertical carbon export using results from 38 Lagrangian experiments in the California Current Ecosystem. The dominant mode of variability reflected onshore-offshore nutrient gradients. A secondary mode of variability was correlated with silica excess and dissolved iron and likely reflects regional patterns of iron limitation. The biological carbon pump was enhanced in high-nutrient and Fe-stressed regions. Patterns in the nutrient landscape proved to be better predictors of the vertical flux of sinking particles than contemporaneous measurements of net primary production. Our results suggest an important role for Fe-stressed diatoms in vertical carbon flux. They also suggest that either preferential recycling of N or non-Redfieldian nutrient uptake by diatoms may lead to high PO₄³⁻:NO₃⁻ and Si(OH)₄:NO₃⁻ ratios, following export of P- and Si-enriched organic matter. Increased export following Fe stress may partially explain inverse relationships between net primary productivity and export efficiency.

Plain Language Summary The productivity of marine ecosystems is limited by the availability of macronutrients (nitrogen and phosphorus) and trace elements (iron) in the sunlit surface ocean. The ocean's ability to absorb atmospheric carbon dioxide through the “biological carbon pump” is further constrained by the rates at which oceanic upwelling naturally fertilizes the surface ocean with “new” nitrogen contained in nutrient-rich deep water. We investigated patterns in nutrient distributions during 38 experiments in the California Current Ecosystem. In these experiments, we followed biological communities as they were transported with the currents and measured nutrients, primary productivity, and the export of organic carbon contained in sinking particles. Our results indicate that nutrient concentrations may be a useful predictor of rates of carbon export and that iron stress increased the efficiency with which organic carbon created by algae is transported to the deep ocean. This increased carbon export efficiency likely results from physiological changes within diatoms that lead to thicker silica shells relative to organic carbon content.

1. Introduction

Macronutrient and micronutrient distributions limit marine productivity and shape plankton community dynamics (Dugdale, 1967; Moore et al., 2013). The macronutrients NO₃⁻, NH₄⁺, and PO₄³⁻ are necessary and often limiting for all phytoplankton taxa, while silicic acid is required by diatoms, which are often the dominant taxa in coastal regions (Benitez-Nelson, 2000; Davey et al., 2008; Dugdale & Goering, 1967). Although all phytoplankton taxa require Fe and other trace metals, these trace elements are typically most important for the growth of large phytoplankton (e.g., diatoms) in open-ocean regions with limited dust deposition (Behrenfeld et al., 1996; de Baar et al., 2005; Falkowski et al., 1998). The supply of “new” nutrients (i.e., nutrients that are not produced through internal ecosystem recycling) to the euphotic zone is also a fundamental constraint on the biological carbon pump (BCP). The BCP is a suite of processes that convert carbon dioxide into organic carbon and then sequester this organic carbon in the deep ocean for periods of decades to millennia (Boyd et al., 2019; Eppley & Peterson, 1979; Volk & Hoffert, 1985). The BCP is fundamentally linked to nitrogen (in addition to phosphorus and Fe) supply to the euphotic zone as a result of the relatively constant elemental stoichiometry of marine organic matter (Redfield, 1934; Takahashi et al., 1985). However, the BCP is driven by ecological interactions that combine organic matter into sinking particles and aggregates, create recalcitrant organic matter that is eventually subducted, or actively transport...
carbon to depth during vertical migrations (Buesseler & Boyd, 2009; Ducklow et al., 2001; Steinberg & Landry, 2017). Quantifying the interactions between nutrient supply, availability, stoichiometry, and the BCP is an important part of understanding future changes in marine carbon sequestration as a result of climate change (Boyd, 2015; Omta et al., 2006; Passow & Carlson, 2012).

Understanding nutrient dynamics and the BCP in coastal ecosystems is particularly important, because of the high biomass, productivity, and CO₂ fluxes in these regions (Ducklow & McCallister, 2004). Eastern boundary current upwelling ecosystems are some of the most productive ecosystems on our planet and are expected to respond to increasing land-sea temperature gradients (Bakun, 1990; Sydeman et al., 2014). The southern California Current Ecosystem (CCE) is a coastal upwelling biome that supports a high biomass of plankton and higher trophic levels (Ohman et al., 2013). It is a region that experiences substantial interannual and decadal variability (Chelton et al., 1982; Lavaniegos & Ohman, 2007; McGowan et al., 2003). It is expected to receive enhanced nutrient supply as a result of climate change, although the impact of upwelling on nutrient supply is complicated by documented changes in the source water for upwelling (Bograd et al., 2015; Rykaczewski & Dunne, 2010).

Despite being a coastal biome, the narrow shelf of the CCE leads to relatively weak fluxes of Fe into the euphotic zone (Bruland et al., 2001; King & Barbeau, 2011). As a result, large regions of the CCE are believed to experience Fe limitation or Fe and N colimitation (Hutchins & Bruland, 1998; King & Barbeau, 2007). Fe limitation in the CCE has been diagnosed through observations of Siex, where Siex = [Si(OH)₄]⁻ − [NO₃⁻] × RSi:.NO₃ and RSi:NO₃ is the ratio of Si:NO₃⁻ in upwelled waters (Hogle et al., 2018). Negative Siex is believed to be created when Fe-starved diatoms take up excess Si relative to NO₃⁻ (Franck et al., 2000; Hutchins & Bruland, 1998). The mineral ballasting provided by these dense diatoms is believed to lead to increased export flux in the CCE (Brzezinski et al., 2015; Stukel et al., 2017), although the export flux is mediated by mesozooplankton that repackages diatoms into rapidly sinking fecal pellets (Morrow et al., 2018; Stukel et al., 2013). Similarly, export flux is enhanced in the deep Atlantic, following Fe introduction by Saharan dust (Pabortsava et al., 2017). Siex has been used to show that Fe limitation may be a pervasive feature of subsurface chlorophyll maxima in the CCE (Hogle et al., 2018). However, Siex can also be created without Fe limitation if N is preferentially remineralized (relative to Si) from sinking particles and diatoms utilize recycled NH₄⁺.

To investigate nutrient patterns and their impact on carbon export, we utilize results from 38 two- to five-day Lagrangian experiments conducted on eight different cruises of the CCE Long-Term Ecological Research (LTER) program. These Lagrangian experiments allowed us to simultaneously determine nutrient concentration profiles, measure net primary production (NPP), and deploy sediment traps to quantify sinking carbon flux. We use principal component analysis (PCA) to determine that the primary driver of nutrient variability is coastal upwelling, while the secondary mode is Fe limitation. We further show that the nutrient landscape is a better predictor of carbon export than NPP.

2. Materials and Methods

2.1. In Situ Sampling

In situ measurements were made during quasi-Lagrangian experiments (hereafter “cycles”) of the CCE LTER program (King et al., 2012; Landry et al., 2009). During these cycles, water parcels (ranging from coastal eutrophic to oligotrophic offshore communities) were marked with an array consisting of a surface, satellite-enabled float, and a 3 × 1-m drogue. Two types of arrays were deployed. One consisted of a set of attachment points for mesh bags containing incubation bottles (Landry et al., 2009). Incubations (for H¹⁴CO₃⁻ uptake NPP, among other measurements) were conducted at six to eight depths spanning the euphotic zone (Morrow et al., 2018). The second array supported drifting sediment traps deployed at one to three depths beneath the euphotic zone (Stukel et al., 2013). For additional methodological details, see supporting information.

Lagrangian sampling was conducted on eight cruises of the CCE LTER program, although sampling plans varied as a result of differing cruise objectives. On the P0605 (May 2006), P0704 (April 2007), and P0810 (October 2008) cruises, our goal was to investigate variability in plankton dynamics in the region. Hence we sampled homogeneous (i.e., nonfrontal) water parcels spanning coastal to offshore conditions (Landry...
et al., 2012; Stukel et al., 2012). On the P1408 (August 2014) and P1604 (April 2016) cruises, our goal was to investigate system responses to anomalous warming associated with the 2014–2015 North Pacific warm anomaly and ensuing El Niño using similar sampling patterns (Kelly et al., 2018; Morrow et al., 2018; Nickels & Ohman, 2018). On the P1106 (June 2011) and P1208 (August 2012) cruises, we sought to determine ecosystem responses to mesoscale fronts and hence conducted cycles within and to either side of strong frontal gradients (de Verneil & Franks, 2015; Krause et al., 2015; Stukel et al., 2017). On the P1706 (June 2017) cruise, we investigated cross-shore transport mediated by a coastal filament, and hence cycles from this cruise represent a progression from coastal upwelling conditions to bloom decay as water is advected offshore.

Samples for macronutrients were taken from two CTD-Niskin rosette casts per day on each cycle. Samples were filtered through a 0.1-μm filter and stored at −20°C until analysis on land. NO$_3^−$ + NO$_2^−$ (hereafter NO$_3^−$), PO$_4^{3−}$, Si(OH)$_4$, and NH$_4^+$ were determined colorimetrically using an autoanalyzer (Parsons et al., 1984). Dissolved Fe (dFe) was measured on samples collected using either trace metal clean Go-Flo bottles or a trace metal clean rosette (Bundy et al., 2016; King et al., 2012). dFe was measured using a chemiluminescent flow injection approach (King & Barbeau, 2011). SAFe standards (Johnson et al., 2007) were analyzed as an independent validation of the method.

Vertical carbon flux was measured using VERTEX-style sediment traps (Knauer et al., 1979) and 238U–234Th disequilibrium (Waples et al., 2006). Sediment traps (8:1 aspect ratio with a baffle on top consisting of 14 smaller, beveled tubes with similar aspect ratio) were consistently deployed at a depth of 100 m. Additional traps were deployed near the base of the euphotic zone (when the euphotic zone was shallower than 80 m) and at 150 m (on cruises from 2014 onward). Traps were deployed with a saltwater brine (filtered seawater + 50 g L$^{-1}$ NaCl) poisoned with (0.4%) formaldehyde. After recovery, >200-μm swimming mesozooplankton were removed from the samples, and samples were filtered for carbon analyses by Carbon Hydrogen Nitrogen (CHN) analyzer and biogenic Si analyses using a NaOH digestion approach (Krause et al., 2015; Stukel et al., 2019). 234Th was measured using standard small volume approaches (Benitez-Nelson et al., 2001; Pike et al., 2005). 238U was estimated from salinity (Owens et al., 2011), and 234Th export was determined from 238U–234Th deficiency using a steady-state one-dimensional approximation (Savoye et al., 2006). Excellent agreement was found between 234Th flux into sediment traps and 238U–234Th disequilibrium, suggesting no substantial under- or over-collection bias by sediment traps (Stukel & Kelly, 2019; Stukel et al., 2019). Because sediment trap integration time more closely matches that of other measurements, we use sediment trap results for all cruises except P0605 (when sediment traps were not available). For additional details, see Stukel et al. (2019) and Morrow et al. (2018).

2.2. Statistical Analyses

To investigate the nutrient landscape in the CCE, we used 11 nutrient indices: surface [NO$_3^−$], [NH$_4^+$], [PO$_4^{3−}$], [Si(OH)$_4$], [dFe], Si$_{ex}$, and N* (=[NO$_3^−$]−16×[PO$_4^{3−}$]), and the depths of the nitracline, phosphocline, silicocline, and ferrocline. We used probabilistic PCA (Tipping & Bishop, 1999) to explore nutrient patterns after normalization of the data. To investigate the correlations between nutrient principal components (PCs) and vertical carbon flux, we used stepwise linear regression (Draper & Smith, 1998) with the PCs as independent variables and log$_{10}$ transformed carbon flux as the dependent variable. To quantitatively compare the predictive ability of regressions based on nutrient dynamics to regressions based on NPP, we used nonparametric bootstrapping approaches. Briefly, 107 random data sets were created by sampling half of the 36 Lagrangian cycles that included carbon flux measurements (included data set). These data sets were used to quantify separate ordinary least squares (OLS) regressions using nutrient PCs or log$_{10}$(NPP) as independent variables and log$_{10}$(Export) as the dependent variable. OLS regression was used, as recommended by Sokal and Rohlf (2012), because only OLS minimizes the sum of squared residuals in the dependent variable, thus making it the most appropriate approach when used for prediction. We caution, however, that OLS is not appropriate if the goal is to investigate the functional relationship (i.e., slope) between the dependent and independent variables, and the independent variable is not controlled. Predicted values of carbon export were computed for the 18 Lagrangian cycles not included in determining the regression. The sum of squared model misfits was then computed for the nutrient-based regressions and the NPP-based regression. For additional details, see supporting information.
3. Results and Discussion

3.1. The Nutrient Landscape in the CCE

Nutrient conditions encountered across the 38 Lagrangian cycles were highly variable. Cycle average surface NO$_3^-$ ranged from 0.01 to 7.8 μmol L$^{-1}$, with a standard deviation of 2.5 μmol L$^{-1}$. Surface NH$_4^+$ ranged from undetectable to 1.8 μmol L$^{-1}$ but was typically in the range of 0.05 to 0.3 μmol L$^{-1}$. Surface PO$_4^{3-}$ was likely not limiting for phytoplankton and ranged from 0.16 to 0.78 μmol L$^{-1}$, with consistently negative N*: values. Surface Si(OH)$_4$ showed similar variability to NO$_3^-$, ranging from 0.22 to 11.2 μmol L$^{-1}$ with a standard deviation of 2.6 μmol L$^{-1}$ although it was not drawn down as low as NO$_3^-$. Si(OH)$_4$ was typically positive at the surface but was negative on seven cycles, reaching values as low as -5.0 μmol L$^{-1}$. Surface dFe ranged from 0.069 to 1.3 nmol L$^{-1}$. The cycle average depth of the nitracline varied from 17 to 152 m. Nitracline, phosphocline, silicocline, and ferrocline depths were highly correlated.

Probabilistic PCA reveals the dominant modes of variability in the nutrient landscape. The first PC had strong negative coefficients for all surface nutrient concentrations and strong positive coefficients for the depth of all nutriclines and explained 50% of the variability in the data (Figure 1a and supporting information Table S1). It split the samples along a trophic gradient in which negative scores for PC1 were indicative of nutrient-rich upwelled waters and positive scores reflected nutrient-depleted oligotrophic conditions. PC1 mostly reflected the strong cross-shore gradients in the CCE, with negative scores near the Point Conception upwelling center and positive scores offshore. However, there was intercruise variability in the ranges of upwelling and oligotrophic conditions (Figure 1b). Most noticeably, on the P1408 cruise all cycles had positive PC1, because upwelling was suppressed by region-wide warming (Bond et al., 2015; Kahru et al., 2018). PC1 was the only PC that was significantly correlated with typical indices of ecosystem productivity including surface Chl a (Spearman’s $p = -0.82$, $p = 9 \times 10^{-6}$) and vertically integrated NPP ($p = -0.84$, $p = 6 \times 10^{-6}$).

PC2 explained 25% of the variance and had strongly negative coefficients for Si$_{ex}$ and surface dFe and a strongly positive coefficient for ferrocline depth (with weaker negative coefficients for N* and positive coefficients for NO$_3^-$, PO$_4^{3-}$, and NH$_4^+$). PC2 likely reflected surface Fe limitation in the CCE, with positive scores indicating Fe-depleted conditions with low surface dFe, a deep ferrocline, and Si (OH)$_4$ drawn down by Fe-starved diatoms. Positive PC2 (Fe limitation) was typically found at intermediate distances from the coast; the cycles conducted nearest to the coast and farthest from the coast typically had negative scores.

PC3 explained 15% of the variance and had strongly positive coefficients for surface Si (OH)$_4$, PO$_4^{3-}$, and Si$_{ex}$ and negative coefficients for N* (Figure 1c,d). Despite the positive coefficients for these surface macronutrients, PC3 also had slightly positive coefficients for nitracline depth, silicocline depth, and phosphocline depth. It had near-zero coefficients for surface NO$_3^-$, dFe, and ferrocline depth. PC3 largely splits the data set into high PO$_4^{3-}$:NO$_3^-$ and Si(OH)$_4$:NO$_3^-$ and low PO$_4^{3-}$:NO$_3^-$ and Si(OH)$_4$:NO$_3^-$ cycles and showed the greatest variability in water parcels with positive values for PC1 (i.e., low nutrient). Notably, the four cycles with distinctly low PC3 scores (<-2) were either close to shore (two P1408 cycles) or on the coastal edges of high plankton biomass open-ocean frontal regions (one cycle each from P1106 and P1208). These cycles all exhibited very low concentrations of Si(OH)$_4$ (<0.56 μmol L$^{-1}$; four of the five lowest values in the data set) and PO$_4^{3-}$ (<0.22 μmol L$^{-1}$, the four lowest values in the data set). In contrast, cycles with positive PC1 and PC3 were typically far from shore in persistently oligotrophic regions.

The mechanisms responsible for generating the PC3 mode of variability are less obvious than for PC1 or PC2 but may reflect periods with preferential N recycling and hence export of Si- and P-enriched particles or periods following intense Si and P uptake by diatoms. Diatoms have been shown to have low N:P ratios in the Southern Ocean and in culture (García et al., 2018; Lomas et al., 2019; Price, 2005; Quigg et al., 2003). Their non-Redfieldian growth could thus preferentially drawdown PO$_4^{3-}$, relative to NO$_3^-$, to maintain low P: N conditions would then require that the P (and Si) enriched particulate matter be subsequently exported to depth, rather than remineralized within the euphotic zone, an outcome that is likely given the demonstrated importance of diatoms to the biological pump in the CCE (Brzezinski et al., 2015; Krause et al., 2015; Shipe et al., 2002). An alternative or potentially complementary mechanism involves preferential recycling of N relative to P and Si. Preferential recycling of N relative to P may be caused by the consistent pattern of excess PO$_4^{3-}$ relative to NO$_3^-$ in the CCE (e.g., negative N*), which suggests a generally N-limited community.
Preferential recycling of N relative to Si is expected because Si dissolution from sinking particles is primarily a (relatively slow) physicochemical process, while N recycling is mediated by microbes and zooplankton that preferentially consume amino acids relative to lipids and other recalcitrant forms of organic matter. Thus when sinking particles are removing organic matter from the surface ocean, preferential N recycling could lead to reduced PO$_4^{3-}$:NO$_3^-$ and Si(OH)$_4$:NO$_3^-$ ratios due to export of high P:N and Si:N particles. Conversely, periods of reduced N recycling or reduced export of diatoms would be associated with less downward flux of silicon- or phosphorus-enriched organic matter. In such cases, drawdown of the limiting nutrient (N) by phytoplankton would lead to high PO$_4^{3-}$:NO$_3^-$ and Si(OH)$_4$:NO$_3^-$ ratios in surface waters. These hypotheses are supported by the Si:N ratio of sinking particles, which was typically greater than 1, particularly in high biomass areas (when Chl >0.5 mg Chl a m$^{-3}$, the mean Si:N ratio was 3.4 (mol:mol) and the median was 3.2). PC3 may thus reflect a mechanism that may generate S$_{ex}$ without Fe limitation, although it notably explains less of the variability in the S$_{ex}$ signal than PC2 (Fe limitation). It is important to note, however, that we do not have measurements of P:N ratios of sinking material. N:P ratios of sinking material are variable in the world oceans, with some regions showing excess P export and other regions showing excess N export (Benitez-Nelson et al., 2004; Sekula-Wood et al., 2012; Singh et al., 2015; Stukel et al., 2016). Differences may depend on whether total N flux is...
compared to organic P flux (in which case excess P remineralization is typically found) or to total P flux (which at times shows excess P export) (Faul et al., 2005; Hopkinson & Vallino, 2005). The surprising pattern of positive coefficients for both surface Si(OH)₄ and depth of the silicocline and surface PO₄³⁻ and depth of the phosphocline also suggest, however, that altered stratification and/or subsurface nutrient supply could play a role in this mode of variability.

3.2. BCP Responses to the Nutrient Landscape and NPP

NPP is generally considered to be the best ecosystem predictor of vertical carbon export. Indeed, most models assume a relationship between NPP and export and then focus on estimating export efficiency (export/NPP) as a function of NPP, temperature, and/or the size-structure of phytoplankton communities (Henson et al., 2011; Laws et al., 2011; Siegel et al., 2014). An OLS regression of log₁₀-transformed export against log₁₀-transformed NPP suggested a relationship of Export = 1.3 × NPP⁰.⁵⁹ (Figure 2a). The fact that the exponent in this equation is less than one implies that export efficiency (also called the e-ratio) decreases with increasing NPP. This inverse relationship between export efficiency and NPP is notably different from the results of some prominent global algorithms used to predict carbon export (Dunne et al., 2005; Laws et al., 2000; Siegel et al., 2014) but is not dissimilar to results quantifying intraregional variability in the BCP in other areas (Maiti et al., 2013). The regression in Figure 2a explains a moderate amount of the variability in export (R² = 0.49).

We compared mean carbon export under different nutrient conditions (Figure 2b, c). Carbon export was substantially higher during high-nutrient conditions, especially during Fe-stressed conditions (upper left quadrant of Figure 2b, export = 30 ± 7 mmol C m⁻² d⁻¹, mean ± standard error) and low PO₄³⁻:NO₃⁻ and Si(OH)₄:NO₃⁻ cycles (lower left quadrant of Figure 2c, export = 34 ± 4.6 mmol C m⁻² d⁻¹). Carbon export was lower during high-nutrient but Fe-replete (22 ± 3.6 mmol C m⁻² d⁻¹) or high PO₄³⁻:NO₃⁻ and Si(OH)₄:NO₃⁻ cycles (16 ± 2.3 mmol C m⁻² d⁻¹). During low-nutrient conditions (PC1 > 0, all quadrants had mean export ranging from 11 to 17 mmol C m⁻² d⁻¹). These results agree with previous studies finding that export in the CCE is enhanced during Fe-limited conditions (Brzezinski et al., 2015; Stukel et al., 2017). They also support the supposition that PC3 is driven by preferential N recycling; when export is high, preferential N recycling can lead to low PO₄³⁻:NO₃⁻ and Si(OH)₄:NO₃⁻. When export is low, the Si- and P-enriched organic matter is not efficiently removed from the ecosystem, limiting the impact of preferential N recycling. These results are not, however, inconsistent with our alternate or complementary hypothesis for PC3 (excess P and Si drawdown during non-Redfieldian diatom blooms and subsequent export of P- and Si-enriched particles). Importantly, this suggests that PC1 (system eutrophy) and PC2 (Fe stress) may drive carbon export patterns, while PC3 may result from variability in particle export. Further research is necessary to support or refute these hypotheses.
To determine which PCs should be included as predictors of carbon export, we used step-wise linear regression. Results showed that PC1, PC2, and PC3 should all be included (with p values of 3.5×10^{-5}, 0.021, and 0.004, respectively) but that PC4 did not have statistically significant predictive value ($p = 0.90$). The resultant equation was $\log_{10}(\text{export}) = -0.089 \times \text{PC1} + 0.060 \times \text{PC2} - 0.093 \times \text{PC3} + 1.14$. The R^2 for this equation was 0.59, which suggests that the nutrient landscape may be a better predictor of export flux than NPP (Figure 3). However, the additional independent variables in the PC regression make a simple R^2 comparison problematic. To statistically compare the PC and NPP regressions, we used a nonparametric bootstrapping approach using withheld data points as an independent validation. We tested models with PC1, PC1 and PC2 or PC3, the first three PCs, and NPP. All PC models outperformed the NPP model with respect to the sum of squared misfits, except the model including all three PCs (which was a better predictor in only 37% of simulations). The model with PC1 only was better than the NPP model in 73% of simulations. The model with PC1 and PC2 was better in 63% of simulations. The model with PC1 and PC3 was better in 90% of simulations. Our results thus suggest that measurements of the nutrient landscape may prove to be a useful predictor of carbon export.

3.3. Fe Stress and Carbon Export Efficiency

Our results confirm that negative values of Si$_{ex}$ in the CCE are primarily correlated with Fe-limited conditions (PC2), although they can be created to a lesser extent by preferential remineralization of N (PC3). They also agree with previous results suggesting that physiological adaptations of Fe-stressed diatoms may lead to increased silicification and efficient export of this Si-ballasted material (Bruland et al., 2001; Brzezinski et al., 2015). These results may shed light on surprising patterns that have emerged with respect to the relationship between primary productivity and export efficiency (export/primary productivity). Early syntheses and models suggested that export efficiency should be higher in productive regions (Dunne et al., 2005; Eppley & Peterson, 1979; Laws et al., 2000). These results were informed by measurements of new production, which show a strong correlation between nitrate, productivity, and export efficiency (Dugdale & Goering, 1967; Harrison et al., 1987), and by the consensus view that large phytoplankton in upwelling regions are more likely to sink individually or be consumed by large fecal pellet-producing mesozooplankton (Michaels & Silver, 1988; Smayda, 1970). More recent results, however, have found inverse correlations between primary productivity and export efficiency in the CCE (Kelly et al., 2018; Stukel et al., 2013) and other regions including the Southern Ocean, Canary Current, and Gulf of Mexico (Hernández-León et al., 2019; Maiti et al., 2013; Maiti et al., 2016). Hypothesized reasons for this discrepancy between theory and in situ measurements include offshore advection of communities, temporal lags between production and export, and specific relationships associated with zooplankton and microbes (Henson et al., 2015; Kelly et al., 2018; Laws & Maiti, 2019; Le Moigne et al., 2016; Plattner et al., 2005). Temporal lags between phytoplankton production and the conversion of organic matter into sinking particles by multiple food web pathways, which range from two to thirty days, may be of particular importance and have been shown to explain inverse relationships in the Southern Ocean and oligotrophic Pacific (Benitez-Nelson et al., 2001; Laws & Maiti, 2019; Stange et al., 2017). However, comparison of satellite-derived NPP time series to in situ export measurements in the CCE suggested that although there was on average a 7- to 8-day lag between production and export, this lag could not explain the inverse relationship in our carbon flux data set (Kahru et al., 2019). Instead, our results suggest changes in physiological status over the course of a bloom may also contribute substantially, at least in potentially Fe-limited regions. Primary production (and new production) peak during the early phases of a bloom when nutrients are...
replete. During these periods healthy cells are able to regulate their buoyancy either actively or passively. In the mid to late stages of the bloom, however, decreased primary production coincides with Fe stress-induced increases in density and sinking rates. This decouples export from contemporaneous primary productivity, obfuscating expected relationships between productivity and export.

4. Conclusions

PCA showed that the dominant mode of nutrient variability in the CCE was an upwelling-driven onshore-offshore nutrient gradient. The second mode of variability reflected Fe stress as evidenced by a strong covariance between Siex and surface dFe concentrations. This supports the use of negative Siex as a tracer of Fe stress in the region. However, the third PC was associated with Siex (and N$^+$), but not dFe. We interpret this as a signal of negative Siex creation through either non-Redfieldian nutrient uptake by diatoms or preferential recycling of N relative to Si in the surface ocean. Vertical carbon export was enhanced during high-nutrient, Fe-stressed, and low PO$_4$3- NO_3$ conditions. Linear regressions relating vertical carbon flux to nutrient PCs explained more of the variance and had higher predictive power than a linear regression between NPP and export. This suggests that nutrient concentrations could be used to predict carbon export, although we caution that such relationships are likely region-specific and future work is necessary to determine if they are robust across seasonal and interannual variability in the CCE.

References

