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1.  INTRODUCTION

Nearshore ecosystems are highly productive and
im portant contributors to the economy of coastal
communities (Costanza et al. 1997, Beck et al. 2001,
Barth et al. 2007, Mann 2000). Along the California
coast, the diverse and abundant populations of mar-
ine fish serve as valuable resources for both commer-
cial and recreational fisheries (Methot 1983, Califor-
nia Department of Fish and Wildlife 2002). However,
the dynamic conditions of the coastal marine envi-
ronment and fishing pressures can lead to significant
fluctuations in the abundance, diversity, and distri-
butions of these species (Mann 2000, Perry et al.
2005, Anderson et al. 2008, Last et al. 2011, Shelton &
Mangel 2011). As a result, coastal populations need
to be monitored across robust spatial and temporal

scales in order to implement effective management
and conservation strategies that will maintain both
their economic and ecological viability. Despite this,
only a limited number of studies have been con-
ducted on these scales for fish communities in near-
shore environments along the California coast.

Fish population survey methods usually require
vis ual identification. This is reflected in the most com-
mon methods — diver surveys and trawls. However,
these expensive and resource-intensive methods may
miss cryptic species and generally fail to sample early
life stages (Brock 1982, Stewart & Beukers 2000). Ich-
thyoplankton surveys, the collection of fish eggs and
larvae, complement the traditional methods by ac-
counting for some of the species at risk of being over-
looked (Waugh 2007, Jaafar et al. 2012). Such sur-
veys have been successfully employed to monitor the
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spawning activity of fishes in the California Current.
For example, the California Cooperative Oceanic
Fisheries Investigations (CalCOFI) survey cruises
have produced notable temporally and spatially ro-
bust datasets for ichthyoplankton located in offshore
communities in the California Current. As a comple-
ment to these surveys, Brewer & Smith (1982) de-
ployed cruises for nearshore ichthyoplankton moni-
toring from 1978 to 1980, focusing on larvae from
northern anchovy Engraulis mordax and Pacific sar-
dine Sardinops sagax. Barnett et al. (1984) also gath-
ered coastal ichthyoplankton samples from 1977 to
1979, documenting shifts in ichthyoplankton as the
distance from shore increased. Through these surveys,
differences in larval abundance between the near-
shore and offshore environments have been ob served
in commercially and ecologically important species.
More recently, Suntsov et al. (2012) combined ichthyo -
plankton data from a variety of sources to evaluate the
spatial structure of nearshore fish assemblages from
San Diego to San Francisco. Their data accentuate
shifts in species diversity with in creasing depth and
latitude. These surveys highlight the need for large-
scale temporal and spatial monitoring of coastal areas,
as there is not an active nearshore equivalent to Cal-
COFI’s long-term monitoring program.

Species such as the northern anchovy and Pacific
sardine have always been well suited to ichthyo-
plankton surveys because their eggs can easily be
identified morphologically, but most other species’
eggs are not as distinct. However, through the use of
molecular methods, a wide variety of ichthyoplank-
ton can be accurately identified to species level
(Ward et al. 2009, Gleason & Burton 2012, Harada et
al. 2015, Duke et al. 2018). Ichthyoplankton sampling
has been successfully employed to classify spawning
seasons, estimate the abundance of adult spawning
biomass, and assess the species composition of
spawning communities, making it an excellent tool
for fisheries management (Ahlstrom & Moser 1976,
Hunter & Lo 1993, Harada et al. 2015, Duke et al.
2018). Additionally, patterns or variability in larval
fish assemblages have been used as ecosystem indi-
cators to classify environmental changes, such as sea
surface temperature anomalies (Brodeur et al. 2006).

This study explores how species diversity changes
across a latitudinal gradient and provides baseline
information as to which species are spawning at 6
study locations along the California coast: Santa
Cruz, San Luis Obispo, Santa Barbara, Santa Monica,
Newport Beach, and La Jolla (SIO). Sampling in La
Jolla extends the work of Harada et al. (2015) and
Duke et al. (2018), which was initiated in 2012 at the

Scripps Pier (SIO), at the boundary of 2 marine pro-
tected areas (MPAs), the San Diego-Scripps Coastal
State Marine Conservation Area (SMCA) and the
Matlahuayl State Marine Reserve (SMR). Duke et al.
(2018) documented extensive interannual variation
in egg abundance during the summer spawning sea-
son in La Jolla and found a strong negative correla-
tion between egg abundance and winter sea surface
temperatures (SST). We continued sampling at the
Scripps Pier through 2019 to determine the produc-
tivity of the 2018 and 2019 spawning seasons, evalu-
ate whether the correlation between SST and egg
abundance was upheld, and assess the relationship
be tween egg abundance and species diversity. Un -
like the majority of ichthyoplankton studies in the
region, we at tempted to sample each site on a
weekly basis, giving greater temporal resolution of
the spawning activity of each species found in our
collections.

2.  MATERIALS & METHODS

2.1.  Egg collection and quantification

Weekly fish egg collections were completed using
vertical plankton tows conducted off the ends of
Scripps Pier in La Jolla (SIO), Newport Beach Pier
(NBP), Santa Monica Pier (SM), Stearns Wharf Pier in
Santa Barbara (SB), Cal Poly Pier in San Luis Obispo
(CP), and the Santa Cruz Wharf Pier (SC). Sampling
at SIO occurred from 2013 to 2019, while sampling at
the other 5 sites spanned 2019 only. The SIO, NBP,
SM, and SB sites are shore stations within the South-
ern California Coastal Ocean Observing System
(SCCOOS), and CP and SC are within the Central
and Northern California Coastal Ocean Observing
System (CeNCOOS); the feasibility (logistically and
economically) of our weekly collection schedule was
possible due to collaborations with local personnel
carrying out ongoing physical and biological meas-
urements at these sites. For our ichthyoplankton
sampling, a plankton net (505 μm mesh) was lowered
to the seafloor and raised back out of the water, fun-
neling pelagic eggs into the bottle at the cod end as it
rose. This process was repeated multiple times to in -
crease the volume of water being sampled; however,
due to local logistics, the number of tows and other
sampling factors varied by location. A comparison of
sampling sites and methods can be seen in Table 1.
After the tows were completed, the net was lowered
a final time, only until the rim touched the surface of
the water, and then brought up to wash any residual
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eggs left in the net into the cod end. The contents of
the cod end were transferred to a 1-liter container and
brought back to the laboratory (Scripps Institution of
Oceanography), where they were promptly poured
through a mesh screen (330 μm) to concentrate the
plankton.

At the lab (Scripps Institution of Oceanography), the
concentrated plankton sample was then placed in a
Petri dish with seawater and immediately examined
under a microscope at 7.5× magnification. At the
other 5 locations, the concentrated plankton sample
was stored in 95% ethanol in a 50 ml conical Falcon
tube and shipped to the lab at Scripps Institution of
Oceanography, where it was poured into a Petri dish
and examined under a microscope. Fish eggs were
removed and placed in 1.5 ml microtubes with 95%
ethanol. The morphologically distinct eggs of the
northern anchovy En grau lis mordax and the Pacific
sardine Sardinops sagax were quantified and stored
separately from the rest of the eggs. The eggs that
remained to be identified were stored at −20°C for at
least 24 h until further processing.

2.2.  DNA extraction, amplification, sequencing,
and identification

The extraction, amplification, sequencing, and
identification steps are in accordance with the proto-
cols used by Harada et al. (2015) and Duke et al.
(2018). Each egg was placed in an individual well of
a 0.2 ml PCR strip tube. The ethanol was removed
from each well and each egg was rinsed with 90 μl of
nuclease-free water. The water was removed and
15 μl of a 66% AE buffer solution (Qiagen) was ad d -
ed to each well. The samples were then placed in a
thermal cycler at 95°C for 15 min and maintained in

a 72°C hold until their removal. A clean pipette tip
was used to compress each egg until it burst, ex -
pelling the DNA into the AE buffer solution. The
DNA was stored at −20°C until further processing.

The DNA was thawed at room temperature. A 25 μl
PCR reaction was prepared for each egg’s DNA with
12.5 μl of GoTaq Green 2X Master Mix (Promega),
10.5 μl of molecular grade water, 0.5 μl of each primer,
and 1 μl of DNA. The first primer pair used was the
CO1 universal primers from Ivanova et al. (2007): 5’-
TTC TCA ACC AAC CAC AAA GAC ATT GG-3’
(forward) and 5’-ACT TCY GGG TGR CCR AAR AAT
CA-3’ (reverse). Each sample was vortexed to ensure
that the contents of each well were mixed. The sam-
ples were then placed in the thermocycler following
the cycler conditions utilized by Harada et al. (2015)
and Duke et al. (2018). The PCR product of each sam-
ple was checked on a 1.5% agarose gel for a band
length of 710 base pairs. The samples with the correct
band size were purified and sent for Sanger sequen-
cing. The PCR step was repeated for the samples
lacking bands using the 16S primer set: 5’-CGC CTG
TTA TCA AAA ACA T-3’ (forward) and 5’-CCG GTC
TGA ACT CAG ATC ACG T-3’ (reverse) from Palum -
bi (1996). The thermo cycler conditions remain the
same, with the exception of reducing the number of
cycles from 35 to 30. The PCR products of the 16S PCR
reaction were checked on a 1.5% agarose gel for a
570 base pair band. Samples with the correctly sized
band were purified and sent for sequencing.

PCR products were purified according to Harada et
al. (2015) and Duke et al. (2018) and sent to Retrogen
for Sanger sequencing in 10 μl reactions, with 9 μl of
purified PCR product and 1 μl of either CO1 or 16S
forward primer, depending on which primer was
used in the corresponding PCR. The sequencing re -
sults were run through NCBI’s Basic Local Alignment
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Location                                   SIO                    NBP                       SM                         SB                        CP                         SC

Sampling start date            1-2-2019            1-28-2019              1-2-2019              1-22-2019            1-11-2019              2-6-2019
Sampling end date           12-26-2019         12-31-2019           12-23-2019           12-30-2019          12-13-2019           12-19-2019
Sampling effort                        65                       44                          45                          49                         29                          34

(number of collections)
Latitude                             32° 52’ 2” N      33° 36’ 21.7” N      34° 00’ 27.0” N      34° 24’ 29.1” N    35° 10’ 12.6” N      36° 57’ 26.2” N
Longitude                       117° 15’ 26” W  117° 55’ 52.0” W   118° 29’ 60.0” W   119° 41’ 05.9” W  120° 44’ 26.4” W   122° 01’ 02.2” W
Net diameter (m)                      1                        0.5                        0.75                        0.5                         1                         0.75
Number of tows                        4                         4                            4                           16                          4                            4
Depth (m)                                  5                         7                            6                            6                           9                            5
Sample volume (m3)                64                       30                          44                          64                        112                         45
Tow method                          Crane                  Hand                    Hand                    Hand                   Crane                    Hand

Table 1. Comparison of sampling methodology across sites. The site abbreviations are as follows: SIO: La Jolla; NBP: Newport 
Beach; SM: Santa Monica; SB: Santa Barbara; CP: San Luis Obispo; and SC: Santa Cruz
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Search Tool (BLAST), which compared our samples
to all sequences available in GenBank. The addition
of sequences from Hastings & Burton (2008) greatly
contributed to the robustness of the database for CO1
and 16S sequences of marine fish common to south-
ern California waters. If our sequences matched a
sequence in the database at 95% similarity or higher,
it was classified as the species corresponding to that
sequence. However, 2 closely related species, longfin
sanddab Citharichthys xantho stigma and Pacific
sand dab Citharichthys sordi dus, could only be differ-
entiated from each other if the sequences matched at
greater than 99% similarity. For these 2 species, if
sequences matched between 95% and 99%, they
were recorded as ambiguous (one of the 2 species).

2.3.  Temperature data

The data used to calculate the average annual SST
(°C) and the average annual winter SST (°C) were
ob tained from the Southern California Coastal Ocean
Observing System (SCCOOS) website. Temperature
measurements were recorded approximately every
4 min from a sensor located 2 m below the surface.
The annual and seasonal averages (and standard
error) were calculated from daily averages.

2.4.  Species diversity analysis

The temporal and spatial analyses for species
diversity were performed on subsets of data from
each year/site to mitigate the effects of variable sam-
pling efforts. The minimum number of samples (n)
collected in a year at SIO from 2013 to 2019 (temporal
analysis) and at a site during 2019 (spatial analysis)
was identified. Then, n samples from each of the
other years/sites were chosen at random, and the
total egg abundance, species richness, and effective
number of species (ENS) were calculated and stored
in R. For the temporal analysis, n was 17 and for the
spatial analysis n was 29. This process was repeated
1000 times and the mean, standard deviation, and
standard error of the egg abundance, species rich-
ness, and ENS were calculated from the 1000 trials.
The mean and standard deviation were used to cre-
ate Figs 2 & 4.

The egg abundance, species richness, and ENS
were calculated in the following ways: total egg
abundance = the sum of eggs identified in each sam-
ple, species richness = the number of unique species
identified, and ENS = exp(H) (Hill 1973), where H is

the Shannon diversity index (Weaver & Shannon
1964). The Shannon diversity index was calculated
using the vegan package in RStudio (Oksanen et al.
2013) with the formula: 

(1)

where pi is the proportional abundance of each spe-
cies i and S is the number of species so that:

(2)

3.  RESULTS

During 2019, a total of 4277 eggs were identified,
belonging to 32 different species across 6 sites, with
only 2, speckled sanddab Citharichthys stigmaeus
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SIO NBP SM SB CP SC

Rock wrasse
Anchovy

Yellowfin croaker
Diamond turbot

Kelp bass
Hornyhead turbot
Pacific sand sole

Zebra perch sea chub
Barred sand bass

Pacific/Longfin sanddab
Longfin sanddab

Spotted sand bass
Black croaker

Senorita
Flathead grey mullet

Sheephead
Californian salema

Mussel blenny
Shortfin weakfish

Fantail sole
Pacific sardine
Chub mackerel

Pacific sanddab
Xantic sargo

C.O. sole

Speckled sanddab
California halibut

White croaker
California tonguefish

Queenfish
California corbina

Spotfin croaker

Present Absent

Fig. 1. Species present at each location during 2019. SIO: La
Jolla; NBP: Newport Beach; SM: Santa Monica; SB: Santa
Barbara; CP: San Luis Obispo; and SC: Santa Cruz. The scien-
tific names for these species can be found in Tables S1 and S2
in the Supplement at www. int-res. com/ articles/ suppl/  m669

p139_ supp. pdf

http://www.int-res.com/articles/suppl/m669p139_supp.pdf
http://www.int-res.com/articles/suppl/m669p139_supp.pdf
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and California halibut Paralichthys
cali fornicus, be ing present at all sites
(Fig. 1). There were 6 species, Califor-
nia tonguefish Symphurus atricaudus,
queenfish Seriphus politus, California
cor bina Menticirrhus undulatus, spotfin
croaker Roncador stearnsii, C-O sole
Pleuronichthys coenosus, and rock
wrasse Halichoeres semi cinc tus, pres-
ent at all 4 sites south of Point Concep-
tion that were absent at the 2 northern
sites. Meanwhile, one species, Pacific
sand sole Psett ichthys melanostictus,
was only present at the 2 northern
sites and absent from the other 4.
Interestingly, at SIO, the only location
situated within an MPA (but also the
most southern of the sites), there were
9 species present that were absent
from the other 5 locations.

In addition to the differences in spe-
cies’ distributions of eggs, the intro-
duction of sampling at new locations
re   vealed a wide variety of egg abun-
dances be tween sites. SC, SM, and
NBP lacked large peaks in egg abun-
dance, while CP, SB, and SIO all dis-
played distinct periods of elevated egg
abundance (Fig. 2A). At the 3 sites
with large peaks in egg abundance,
the peak at CP was during winter,
whereas the peaks at SB and SIO oc -
curred during summer months.

Species richness and Shannon diver-
sity were used to compare species  di versity across
the 6 sites, spanning 4 de grees of latitude along the
California coast (Fig. 2B,C). Despite this relatively
short range of latitude, there was a strong, negative
relationship be tween latitude and species richness
(R = −0.84, p = 0.037), with SIO having the highest
species richness (N = 25) by a large margin, and CP
(N = 4) and SC (N = 4) having the lowest species rich-
ness, also by a large margin (Fig. 2B). This finding
complements the distribution of species’ eggs shown
by the  presence/ absence chart (Fig. 1), in which
there were very few species ob served at CP and SC.
A similar, although weaker, trend (R = −0.66, p = 0.14)
is given by the ENS defined through Shannon diver-
sity (Fig. 2C). It is significant that de spite the limited
number of eggs collected from NBP and SM, there
were greater than 10 species identified at these sites,
and regardless of the considerable number of eggs
from CP there were only 4 species identified here.

The ENS at SB was lower than that at both CP and
SC due to the dominance of eggs from speckled
sanddab Cithar ichthys stigmaeus; however, the 3
most northern sites still had markedly less species
diversity than the 3 southern sites.

Over the 7-yr monitoring period at SIO, 24 579 eggs
were identified to species level, representing 46 dif-
ferent species. Eighteen species were observed every
year, with speckled sanddab Citharichthys stigma -
eus, señorita Oxyjulis californica, Pacific sardine Sar -
dinops sagax, Californian salema Xenistius califor -
niensis, and northern anchovy Engraulis mordax
being the most abundant (Fig. 3). The spawning sea-
son, defined by a period of elevated egg abundance,
occurred roughly from 1 May to 31 August in each
year (Fig. 4A). However, the spawning seasons tended
to vary in the timing of the peak egg abundance, the
magnitude of peak egg abundance, and average egg
production. The egg abundances ob served in 2015,
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Fig. 2. Spatial variation in egg abundance and species diversity. (A) Number
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2016, and 2019 lacked large peaks, and the average
egg production during the spawning season (1 May
to 31 August) was lower than the 7-yr average egg
production during the spawning season, x– = 111; in
contrast, 2013, 2014, 2017, and 2018 exhibited large
peaks in egg abundance and the average egg pro-
duction during the spawning season was greater
than the 7-yr average egg production. As shown in
Fig. 3, there were fewer species present in the 3 yr
with lower egg abundance (2015, 2016, and 2019),
but there were no instances of a species present in all
of the higher egg abundance years and absent from
the lower egg abundance years.

There was a strong, positive relationship (R = 0.92,
p = 0.0031) between the total number of eggs identi-
fied during the spawning season and the species

richness of the corresponding season (Fig. 4B). When
using Shannon diversity (converted to ENS) to com-
pare the relationship between egg abundance and
species diversity (Fig. 4C), the relationship weak-
ened (R = 0.7, p = 0.08). In particular, despite having
much lower species richness than the high abun-
dance years, the ENS of 2015 and 2019 (low abun-
dance years) was nearly identical to the ENS of 2014
(high abundance year).

Lastly, the relationship between the average winter
SST and the average spring−summer egg abundance
re ported in Duke et al. (2018) was upheld with the data
from 2 additional years (2018 and 2019). The weekly
SST calculated over a 3-wk rolling average is shown
in Fig. 5A with the additional 2018 and 2019 data in
red, and Fig. 5B shows that there was a negative cor-
relation (R = −0.89, p = 0.0075) between the average
winter (December−February) SST and the average
spring− summer (March−August) egg abundance.

4.  DISCUSSION

When comparing the ichthyoplankton collected
from different sites along the California coast, it is
im portant to note that, in addition to its geographic
location, each site differs in potentially important
ecological parameters, such as depth and the charac-
teristics of adjacent habitat. Also, local oceanography
(i.e. current patterns) will affect the delivery of
spawned eggs from nearby habitats to the collection
site. Combined, these site-specific differences in
habitat contribute to some of the variation we see in
species diversity and abundance. In general, the sites
are located on sandy bottoms, but the distance to
rocky reefs, kelp forest, or other habitats varies.
 Species found at each of the sites are characteristic of
their locality and habitats. For instance, at SB we ob -
served eggs from señorita Oxyjulis californica, kelp
bass Paralabrax clathratus, and various croakers,
complementing data from visual surveys done in the
area (Ebeling et al. 1980). All of the species identified
in our study from SM and NBP have been observed
in the immediate sandy bottom or surrounding rocky
reef habitats in these regions (Allen 1985). The 2019
species composition of the eggs collected at SIO is in
accord with the fish eggs ob served in other years and
by diver surveys conducted in the sandy bottom area
under the SIO Pier (Craig et al. 2004, Hastings et al.
2014, Harada et al. 2015, Duke et al. 2018).

Only 2 of the 32 species found in this study were
ob served at all 6 sites. We, of course, do not conclude
that our observations are tightly correlated to the
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Yellowtail amberjack 
Flathead grey mullet

White seabass
Opaleye

Pacific baracuda
Basketweave cusk eel

Blackbelly eelpout
Calfornia scorpion fish

Round herring
Sharpchin flyingfish

California needlefish
Giant sea bass
Mimic sanddab

Mussel blenny
Ocean whitefish

Pacific pompano

Zebra perch sea chub
Spotted sand bass

Pacific jack mackerel

C.O. sole
Spotted cusk eel

Speckled sanddab
Senorita

Pacific sardine
Californian salema
Northern anchovy

Rock wrasse
California corbina

Spotfin croaker
Pacific sanddab

California halibut
Queenfish
Kelp bass

Sheephead
Yellowfin croaker

Chub mackerel
Diamond turbot

California tonguefish
Shortfin weakfish

White croaker
Longfin sanddab

Xantic sargo
Black croaker

Barred sand bass
Fantail sole

Hornyhead turbot
Longfin/Pacific sanddab

Present Absent

Fig. 3. SIO annual species presence. A gray box indicates
the presence of at least one egg from the given species in
our samples in the given year, while a white box indicates
the absence of eggs from that species. The scientific names
for these species can be found in Tables S3 and S4 in the 
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geographic ranges of the species. Rather, our data
 re flect local abundances and spawning activity
(Zwiefel & Lasker 1976, Garrison et al. 2002, Craig et
al. 2004). Particular species may be locally low in
abundance or distant from their regional spawning
grounds, leading to no eggs in our collections. How-
ever, we do see patterns consistent with known
 geographic distributions. For example, 8 species —
Cali fornia corbina Menticirrhus undulatus, spotfin
croaker Roncador stearnsii, rock wrasse Halichoeres
semicinctus, yellowfin croaker Umbrina roncador,
black croaker Cheilo trema saturnum, mussel blenny
Hypsoblennius jenkinsi, shortfin weakfish Cynoscion
parvipinnis, and xantic sargo Anisotremus davidsonii
— have northern range limits at Point Conception
(Miller & Lea 1972, Hastings et al. 2014), a well-
known biogeographic barrier (Hayden & Dolan 1976,
Horn & Allen 1978, Burton 1998, Gaylord & Gaines
2000, Hohenlohe 2004, Blanchette et al. 2007), and,
as would be expected, none of these  species were ob -
served at CP or SC. Al though ocean warming over
the past several decades has led to documented
northward shifts in a variety of shallow-water species
in California (e.g. Barry et al. 1995) and phenological

shifts in reproductive behavior in the California Cur-
rent ecosystem (Asch 2015), our data suggest that
none of these fish species have yet extended their
spawning ranges north of Point Conception.

Our observation of decreasing species diversity
with increasing latitude is consistent with literature
documenting a sharp decline in species diversity
across the Point Conception biogeographic boundary
(Valentine 1966, Hayden & Dolan 1976, Horn & Allen
1978, Allen et al. 2006, Suntsov et al. 2012). The low
species diversity and the winter timing of peak eggs
at SC and CP are also consistent with previous obser-
vations noting low resident fish catch and February
peak spawning for fish in this region (Parrish et al.
1981). Further sampling is required to determine if
the baseline data shown here are representative of
long-term trends at each site.

The addition of 2018−2019 data at SIO supports the
previous observation by Duke et al. (2018) that there
is extensive interannual variation in the egg abun-
dance exhibited among spawning seasons at SIO.
Interannual variation in ichthyoplankton abundance
is quite common and has been well documented in
Pacific sardine and northern anchovy (Ahlstrom 1966,
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Lluch-Belda et al. 1992, Van der Lingen & Huggett
2003), as well as in other larval fish assemblages
(Loeb et al. 1983, Chiu & Hsyu 1994, Beare et al. 2005,
Duke et al. 2018). Observed seasonal and annual
variation have both been attributed to a number of
abiotic stressors including salinity, up welling, anom-
alous water temperatures, decreased nutrient avail-
ability, and global events such as El Niño or La Niña
(De Vlaming 1972, Bye 1984, Fiedler et al. 1986, Cury
& Roy 1989, Platt et al. 2003, Sims et al. 2004, Taka-
suka et al. 2008, Doyle et al. 2009, Donelson et al.
2010, Pankhurst & Munday 2011, Fincham et al. 2013,
Duke et al. 2018). The effects of water temperature
and photoperiod on the reproductive processes of
fish have been extensively studied and anomalous
SSTs have been linked to numerous re productive dif-
ficulties (reviewed in Pankhurst & Munday 2011,
Wang et al. 2010).

The 7 yr of data from the La Jolla site show that
warm winter SST is correlated with reduced total egg
abundance in the subsequent summer. The de -
pressed egg abundance seen in 2015 and 2016 is

 as so ci ated with the El Niño/Warm Blob events, ex -
plored by Duke et al. (2018); however, SST alone can -
not explain the reduced egg abundance in 2019 be-
cause those events had subsided. SST higher than the
typical range a species is exposed to, especially if out-
side its physiological limits, could lead to reproductive
failure or shifts in species’ ranges (Munday et al. 2008,
Cavole et al. 2016). In order to conclusively determine
how SST can influence the productivity of a spawning
season, more needs to be understood about all of the
species contributing to the spawning season.

The relationship between warm winter SST and re-
duced total egg abundance in summer could be due
to either reduced productivity of many of the con-
tributing species or failure of specific species to spawn
in years with warm winters. Analysis of the temporal
changes in species richness indicate that there are, in
fact, fewer species contributing to the total egg abun-
dance of the spawning season during less productive
years. However, even an equal re duction in the num-
ber of eggs produced by each species, such that the
proportion of eggs from each species remained the
same, would likely result in decreased representation
of rarer species in our samples. The weakened trend
between total egg abundance and ENS, given by
Shannon diversity, suggests that the reduction in total
egg abundance is not purely a result of the absence of
certain species. The nearly equivalent ENS values of
2015, 2019 (low egg abundance years), and 2014
(high egg abundance year) indicate that regardless of
the disparities in species richness, the diversity, de-
fined by both species richness and evenness, is very
similar. The presence/  absence chart (Fig. 3) shows
that there is not a single species contributing to the
egg abundance in high abundance years (2013, 2014,
2017, and 2018) that is absent from all the low egg
abundance years (2015, 2016, and 2019); hence, the
decrease in egg abundance is not caused by the same
species failing to spawn in each warm year. Based on
the limited available data, we conclude that the ob-
served low egg numbers in warm winter years is the
result of a broad effect on the productivity of many of
the resident species.

In summary, our spatial sampling provides some in-
sight into the range of species’ spawning grounds
along the California coast. Although our study sites
span less than half the length of California’s 1350 km
coastline, only 2 of 32 species detected in our year-
long study were observed to spawn at all 6 study sites.
Species diversity among spawners was low at sites
north of Point Conception relative to those in the
south, consistent with both the nature of Point Con-
ception as a biogeographic boundary and the well-
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documented gradient in species diversity with latitude
along the Pacific coast of North America (Wares et al.
2001, Horn et al. 2006). As patterns of climate change
suggest continued warming of the oceans, maintain-
ing spatial and temporal monitoring of fish spawning
across biogeographic barriers such as Point Concep-
tion may provide important insights into the ecological
consequences of environmental change.
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